This is an official implementation for "PlaneRecNet".

Overview

PlaneRecNet

This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wise planes and monocular depth estimation, and focus on the cross-task consistency between two branches. Network Architecture

Changing Logs

22th. Oct. 2021: Initial update, some trained models and data annotation will be uploaded very soon.

Installation

Install environment:

  • Clone this repository and enter it:
git clone https://github.com/EryiXie/PlaneRecNet.git
cd PlaneRecNet
  • Set up the environment using one of the following methods:
    • Using Anaconda
      • Run conda env create -f environment.yml
    • Using Docker
      • dockerfile will come later...

Download trained model:

Here are our models (released on Oct 22th, 2021), which can reproduce the results in the paper:

Quantitative Results

All models below are trained with batch_size=8 and a single RTX3090 or a single RTXA6000 on the plane annotation for ScanNet dataset:

Image Size Backbone FPS Weights
480x640 Resnet50-DCN - [coming soon]
480x640 Resnet101-DCN 14.4 PlaneRecNet_101

Simple Inference

Inference with an single image(*.jpg or *.png format):

python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth  --image=data/example_nyu.jpg

Inference with images in a folder:

python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth --images=input_folder:output_folder

Inference with .mat files from iBims-1 Dataset:

python3 simple_inference.py --config=PlaneRecNet_101_config --trained_model=weights/PlaneRecNet_101_9_125000.pth --ibims1=input_folder:output_folder

Then you will get segmentation and depth estimation results like these:

Qualititative Results

Training

PlaneRecNet is trained on ScanNet with 100k samples on one single RTX 3090 with batch_size=8, it takes approximate 37 hours. Here are the data annotations(about 1.0 GB) for training of ScanNet datasets, which is based on the annotation given by PlaneRCNN and converted into *.json file.

Of course, please download ScanNet too, the annotation file we provid only contains paths for rgb image, depth image and camera intrinsic and the ground truth of piece-wise plane instance and its plane parameters.

  • To train, grab an imagenet-pretrained model and put it in ./weights.
    • For Resnet101, download resnet101_reducedfc.pth from here.
    • For Resnet50, download resnet50-19c8e357.pth from here.
  • Run one of the training commands below.
    • Press ctrl+c while training and it will save an *_interrupt.pth file at the current iteration.
    • All weights are saved in the ./weights directory by default with the file name <config>_<epoch>_<iter>.pth.

Trains PlaneRecNet_101_config with a batch_size of 8.

python3 train.py --config=PlaneRecNet_101_config --batch_size=8

Trains PlaneRecNet, without writing any logs to tensorboard.

python3 train.py --config=PlaneRecNet_101_config --batch_size=8 --no_tensorboard

Run Tensorboard on local dir "./logs" to check the visualization. So far we provide loss recording and image sample visualization, may consider to add more (22.Oct.2021).

tenosrborad --logdir /log/folder/

Resume training PlaneRecNet with a specific weight file and start from the iteration specified in the weight file's name.

python3 train.py --config=PlaneRecNet_101_config --resume=weights/PlaneRecNet_101_X_XXXX.pth

Use the help option to see a description of all available command line arguments.

python3 train.py --help

Multi-GPU Support

We adapted the Multi-GPU support from YOLACT, as well as the introduction of how to use it as follow:

  • Put CUDA_VISIBLE_DEVICES=[gpus] on the beginning of the training command.
    • Where you should replace [gpus] with a comma separated list of the index of each GPU you want to use (e.g., 0,1,2,3).
    • You should still do this if only using 1 GPU.
    • You can check the indices of your GPUs with nvidia-smi.
  • Then, simply set the batch size to 8*num_gpus with the training commands above. The training script will automatically scale the hyperparameters to the right values.
    • If you have memory to spare you can increase the batch size further, but keep it a multiple of the number of GPUs you're using.
    • If you want to allocate the images per GPU specific for different GPUs, you can use --batch_alloc=[alloc] where [alloc] is a comma seprated list containing the number of images on each GPU. This must sum to batch_size.

Known Issues

  1. Userwarning of torch.max_pool2d. This has no real affect. It appears when using PyTorch 1.9. And it is claimed "fixed" for the nightly version of PyTorch.
UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
  1. Userwarning of leaking Caffe2 while training. This issues related to dataloader in PyTorch1.9, to avoid showing this warning, set pin_memory=False for dataloader. But you don't necessarily need to do this.
[W pthreadpool-cpp.cc:90] Warning: Leaking Caffe2 thread-pool after fork. (function pthreadpool)

Citation

If you use PlaneRecNet or this code base in your work, please cite

@misc{xie2021planerecnet,
      title={PlaneRecNet: Multi-Task Learning with Cross-Task Consistency for Piece-Wise Plane Detection and Reconstruction from a Single RGB Image}, 
      author={Yaxu Xie and Fangwen Shu and Jason Rambach and Alain Pagani and Didier Stricker},
      year={2021},
      eprint={2110.11219},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

For questions about our paper or code, please contact Yaxu Xie, or take a good use at the Issues section of this repository.

Owner
yaxu
Oh, hamburgers!
yaxu
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022