Create charts with Python in a very similar way to creating charts using Chart.js

Overview


The power of Chart.js in Jupyter Notebooks

GitHub GitHub release (latest by date) Binder Awesome Chart.js

Installation

You can install ipychart from your terminal using pip or conda:

# using pip
$ pip install ipychart

# using conda
$ conda install -c conda-forge ipychart

Documentation

Usage

Create charts with Python in a very similar way to creating charts using Chart.js. The charts created are fully configurable, interactive and modular and are displayed directly in the output of the the cells of your jupyter notebook environment:

You can also create charts directly from a pandas dataframe. See the Pandas Interface section of the documentation for more details.

Development Installation

For a development installation:

$ git clone https://github.com/nicohlr/ipychart.git
$ cd ipychart
$ conda install jupyterlab nodejs -c conda-forge
$ cd ipychart/js
$ npm install yarn
$ npm install 
$ cd .. 
$ pip install -e .
$ jupyter nbextension install --py --symlink --sys-prefix ipychart
$ jupyter nbextension enable --py --sys-prefix ipychart

References

License

Ipychart is available under the MIT license.

You might also like...
Movies-chart - A CLI app gets the top 250 movies of all time from imdb.com and the top 100 movies from rottentomatoes.com
Movies-chart - A CLI app gets the top 250 movies of all time from imdb.com and the top 100 movies from rottentomatoes.com

movies-chart This CLI app gets the top 250 movies of all time from imdb.com and

Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax.
Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax.

PyDexter Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax. Setup $ pip install PyDexter

🧇 Make Waffle Charts in Python.

PyWaffle PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts. It provides a Figure constructor class Waffle, which coul

🧇 Make Waffle Charts in Python.

PyWaffle PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts. It provides a Figure constructor class Waffle, which coul

Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js

pivottablejs: the Python module Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js Installation pip install pivot

Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js

pivottablejs: the Python module Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js Installation pip install pivot

Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner

streamlit-dashboards Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner Tutorial Video https://ww

mysql relation charts
mysql relation charts

sqlcharts 自动生成数据库关联关系图 复制settings.py.example 重命名为settings.py 将数据库配置信息填入settings.DATABASE,目前支持mysql和postgresql 执行 python build.py -b,-b是读取数据库表结构,如果只更新匹

Altair extension for saving charts in a variety of formats.

Altair Saver This packge provides extensions to Altair for saving charts to a variety of output types. Supported output formats are: .json/.vl.json: V

Comments
  • Running the formatter with a function?

    Running the formatter with a function?

    Hey guys,

    Firstly, thank you for this! What a great implementation. I really appreciate your efforts.

    So I inherited a code base that I'm trying to streamline data while using JavaScript and Python. I'm running into an issue where I can't seem to get the formatter to work on data labels. I'll post the working JS version below and what I've tried to do in Jupyter/Python.

    setChartPercentages() { for (const set of this.chart.data.datasets) set.datalabels = { labels: { value: { formatter: function(value, ctx) { //ctx not needed, but including it as that's typically what the chart.js docs do. return value + '%' } } } } } This function is called when creating or updating charts. I simplified it a bit, but basically it shows total percent instead of the numbers.

    I tried to replicate this in ipychart. I've tried to use the callback function as stated in the documentation as well as just using the formatter. I even tried to combine them. All of them did not register the formatter.

    dataset = { 'labels': ['Data 1', 'Data 2', 'Data 3', 'Data 4', 'Data 5', 'Data 6', 'Data 7', 'Data 8'], 'datasets': [{'data': [14, 22, 36, 48, 60, 90, 28, 12], "datalabels": {"display": True, "labels": { "value": { 'formatter': { 'callback': '''function(value, ctx) {return '$' + value.toString()}''' } } } } }] }

    I also tried

    '''function(value, index, values) {return '$' + value}'''

    Any idea on how to get the formatter to register? Thank you a ton for any help.

    opened by timmyjl12 3
  • Animation with ipywidget

    Animation with ipywidget

    Thanks for this amazing library, I'm surprised it's not already super hyped as the plots are looking great, and at the moment there are zero good equivalents for Jupyter notebooks.

    It is stated in the doc that a plot could be animated with ipywidget. I tried, but there seems to be no equivalent to the Figure attribute of bqplot, or FigureWidget of plotly, which would be used in e.g. a widgets.VBox object. Here is what I currently have, which doesn't work:

    # Modules import
    from ipychart import Chart
    import ipywidgets as widgets
    import time
    import numpy as np
    
    # Define data and chart
    data = {'datasets': [{'data': [{'x': 0, 'y': 0}, {'x': 1, 'y': 1}]}]}
    mychart = Chart(data, 'line')
    
    # Define a button for animation
    btn = widgets.Button(description="Start", icon="play")
    
    # Callback to update the chart
    def update_chart(btn):
        for i in range(10):
            y = np.random.rand(2)
            with mychart.hold_sync():
                mychart.data = {'datasets': [{'data': [{'x': 0, 'y': y[0]}, {'x': 1, 'y': y[1]}]}]}
            time.sleep(0.1)
            
    btn.on_click(update_chart)
    
    # UI Combining Button & Chart
    widgets.VBox([btn, mychart])
    
    

    I believe I should provide something like mychart.fig instead of mychart to widgets.VBox, but I couldn't find any similar attribute in the Chart class. Any idea how to solve that? If yes, that would be a great addendum to the documentation. Thank you :)

    opened by ColasDroin 3
  • Running on jupyter-lab

    Running on jupyter-lab

    Hi,

    Nice project you've got here, just what I wanted.

    Could you add a warning in the "Installing" docs saying that this only works with jupyter-notebook and not with jupyter-labs?

    I don't know if it was a problem only for me, but I couldn't make it work on Jupyter-lab, I kept getting errors when the front-end tried to depend on jupyter.extensions.jupyterWidgetRegistry. Unfortunately I'm not that used with this whole notebook thing and lost a couple hours trying to make it work. 😅

    BR, Gabriel

    opened by Psidium 2
  • Chartjs graphs are not respecting the width and height of the container.

    Chartjs graphs are not respecting the width and height of the container.

    It seems ChartJS might be trying to maintain the aspect ratio in the Voila dashboard web app. I need to turn that option off by setting the "maintainAspectRatio: false" option. Could you add this to the IPYCharts package to correctly render the charts in Voila?

    opened by ndgayan 2
Releases(v0.4.0)
  • v0.4.0(Mar 17, 2022)

    New features in this version:

    • Chart.js backend was updated to 3.x.x. This is a major update, all changes can be seen here: https://www.chartjs.org/docs/latest/getting-started/v3-migration.html. This implies large performance improvements, easier customization, a rewritten animation system, bug fixes etc.
    • Doc: Move from GitLab pages to GitHub pages. Replace algolia search by flexsearch. Re-writing of some sections to match the new syntax of Chart.js 3.x.x. Better handling of components, which are now isolated in separates HTML files called by Vue scripts.
    • Convert all JS code to ES6 Javascript standard. Use ESLint and Prettier to clean the JS codebase.
    • Integration and adaptation of the colorscheme plugin into the codebase because original implementation is not compatible with Chart.js 3.x.x.
    • Start TDD on Python side.
    Source code(tar.gz)
    Source code(zip)
  • v0.3.3(Jan 21, 2022)

  • v0.3.2(Dec 18, 2021)

    New features in this version:

    • Pandas Interface : Complete refactoring of the API. Charts are now created using functions.
    • Added support of Jupyter Lab.
    • Added dynamic update of charts when an agument of the chart is modified. This bring a lots of possibilities to dynamically modify a chart, for example by using ipywidgets (sliders, buttons ...).
    Source code(tar.gz)
    Source code(zip)
  • v0.2.2(Nov 7, 2020)

    New features in this version:

    • Full cleaning of Python code
    • Reduce fontsize in tooltips (back to default size) for charts made using the Pandas Interface
    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(Sep 15, 2020)

    New features in this version:

    • Add zoom feature (using https://github.com/chartjs/chartjs-plugin-zoom), allowing the user to zoom in the chart using his mouse. Double click on the chart will reset the zoom.

    Bug Fixes:

    • Fix tooltips for doughnut, pie, polarArea charts when using pandas interface (tooltips wasn't formatted in the same way as other charts).
    • Fix typing in methods of ChartDataFrame class in pandas interface.
    • Fix docstrings: removing excess arguments and adding missing arguments.
    • Various fixes and minor modifications in the documentation
    Source code(tar.gz)
    Source code(zip)
  • v0.1.4(Sep 4, 2020)

    New features in this version:

    • Pandas Interface : Tooltips are automatically generated to use the column names of the dataframe used to draw the chart. Therefore, the information displayed when hovering the Chart is more relevant and more complete!
    • Code optimization in both Chart & ChartDataFrame classes

    Bug Fixes:

    • Add missing requirements
    • Requirements & LICENSE are now packaged in the source distribution
    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Aug 2, 2020)

    New features in this version:

    • Pandas Interface : add aggregator in the y scale label for clarity purpose.

    Bug Fixes:

    • ChartDataFrame can now handle dataset_options as list (for 2 datasets when hue is activated) or as dict (for 1 dataset when hue is deactivated)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.2(Jul 24, 2020)

    New features in this version:

    • Pandas Interface : draw charts from your pandas dataframe. More details in documentation.
    • Better handling of callback functions in Javascript side. Using loops & Lodash Javascript package instead of listing all possible callbacks.

    Bug Fixes:

    • Dalalabels automatic coloring didn't work when a colorscheme was selected.
    • Default point colors and border colors didn't work on mixed type charts.
    • Callback functions didn't work on axes options.
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Jun 18, 2020)

    Second version of ipychart. Some new features are available:

    • Datalabels (using https://github.com/chartjs/chartjs-plugin-datalabels)
    • Colorschemes (using https://github.com/nagix/chartjs-plugin-colorschemes)
    • New default style
    • Export chart to html

    ... And several bug fixes.

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Apr 29, 2020)

Visualization Website by using Dash and Heroku

Visualization Website by using Dash and Heroku You can visit the website https://payroll-expense-analysis.herokuapp.com/ In this project, I am interes

YF Liu 1 Jan 14, 2022
JupyterHub extension for ContainDS Dashboards

ContainDS Dashboards for JupyterHub A Dashboard publishing solution for Data Science teams to share results with decision makers. Run a private on-pre

Ideonate 179 Nov 29, 2022
HW 02 for CS40 - matplotlib practice

HW 02 for CS40 - matplotlib practice project instructions https://github.com/mikeizbicki/cmc-csci040/tree/2021fall/hw_02 Drake Lyric Analysis Bar Char

13 Oct 27, 2021
A set of three functions, useful in geographical calculations of different sorts

GreatCircle A set of three functions, useful in geographical calculations of different sorts. Available for PHP, Python, Javascript and Ruby. Live dem

72 Sep 30, 2022
NW 2022 Hackathon Project by Angelique Clara Hanzel, Aryan Sonik, Damien Fung, Ramit Brata Biswas

Spiral-Data-Visualizer NW 2022 Hackathon Project by Angelique Clara Hanzell, Aryan Sonik, Damien Fung, Ramit Brata Biswas Description This project vis

Damien Fung 2 Jan 16, 2022
Custom Plotly Dash components based on Mantine React Components library

Dash Mantine Components Dash Mantine Components is a Dash component library based on Mantine React Components Library. It makes it easier to create go

Snehil Vijay 239 Jan 08, 2023
Editor and Presenter for Manim Generated Content.

Editor and Presenter for Manim Generated Content. Take a look at the Working Example. More information can be found on the documentation. These Browse

Manim Community 149 Dec 29, 2022
Analysis and plotting for motor/prop/ESC characterization, thrust vs RPM and torque vs thrust

esc_test This is a Python package used to plot and analyze data collected for the purpose of characterizing a particular propeller, motor, and ESC con

Alex Spitzer 1 Dec 28, 2021
ScisorWiz: Differential Isoform Visualizer for Long-Read RNA Sequencing Data

ScisorWiz: Vizualizer for Differential Isoform Expression README ScisorWiz is a linux-based R-package for visualizing differential isoform expression

Alexander Stein 6 Oct 04, 2022
Missing data visualization module for Python.

missingno Messy datasets? Missing values? missingno provides a small toolset of flexible and easy-to-use missing data visualizations and utilities tha

Aleksey Bilogur 3.4k Dec 29, 2022
Quickly and accurately render even the largest data.

Turn even the largest data into images, accurately Build Status Coverage Latest dev release Latest release Docs Support What is it? Datashader is a da

HoloViz 2.9k Dec 28, 2022
Data-FX is an addon for Blender (2.9) that allows for the visualization of data with different charts

Data-FX Data-FX is an addon for Blender (2.9) that allows for the visualization of data with different charts Currently, there are only 2 chart option

Landon Ferguson 20 Nov 21, 2022
3D-Lorenz-Attractor-simulation-with-python

3D-Lorenz-Attractor-simulation-with-python Animação 3D da trajetória do Atrator de Lorenz, implementada em Python usando o método de Runge-Kutta de 4ª

Hevenicio Silva 17 Dec 08, 2022
Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset.

Visualization-of-Human3.6M-Dataset Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset. human-motion-prediction

Gaurav Kumar Yadav 5 Nov 18, 2022
Create charts with Python in a very similar way to creating charts using Chart.js

Create charts with Python in a very similar way to creating charts using Chart.js. The charts created are fully configurable, interactive and modular and are displayed directly in the output of the t

Nicolas H 68 Dec 08, 2022
A visualization tool made in Pygame for various pathfinding algorithms.

Pathfinding-Visualizer 🚀 A visualization tool made in Pygame for various pathfinding algorithms. Pathfinding is closely related to the shortest path

Aysha sana 7 Jul 09, 2022
A Python wrapper of Neighbor Retrieval Visualizer (NeRV)

PyNeRV A Python wrapper of the dimensionality reduction algorithm Neighbor Retrieval Visualizer (NeRV) Compile Set up the paths in Makefile then make.

2 Aug 29, 2021
GUI for visualization and interactive editing of SMPL-family body models ie. SMPL, SMPL-X, MANO, FLAME.

Body Model Visualizer Introduction This is a simple Open3D-based GUI for SMPL-family body models. This GUI lets you play with the shape, expression, a

Muhammed Kocabas 207 Jan 01, 2023
Colormaps for astronomers

cmastro: colormaps for astronomers 🔭 This package contains custom colormaps that have been used in various astronomical applications, similar to cmoc

Adrian Price-Whelan 12 Oct 11, 2022
A shimmer pre-load component for Plotly Dash

dash-loading-shimmer A shimmer pre-load component for Plotly Dash Installation Get it with pip: pip install dash-loading-extras Or maybe you prefer Pi

Lucas Durand 4 Oct 12, 2022