DilatedNet in Keras for image segmentation

Overview

Keras implementation of DilatedNet for semantic segmentation

A native Keras implementation of semantic segmentation according to Multi-Scale Context Aggregation by Dilated Convolutions (2016). Optionally uses the pretrained weights by the authors'.

The code has been tested on Tensorflow 1.3, Keras 1.2, and Python 3.6.

Using the pretrained model

Download and extract the pretrained model:

curl -L https://github.com/nicolov/segmentation_keras/releases/download/model/nicolov_segmentation_model.tar.gz | tar xvf -

Install dependencies and run:

pip install -r requirements.txt
# For GPU support
pip install tensorflow-gpu==1.3.0

python predict.py --weights_path conversion/converted/dilation8_pascal_voc.npy

The output image will be under images/cat_seg.png.

Converting the original Caffe model

Follow the instructions in the conversion folder to convert the weights to the TensorFlow format that can be used by Keras.

Training

Download the Augmented Pascal VOC dataset here:

curl -L http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz | tar -xvf -

This will create a benchmark_RELEASE directory in the root of the repo. Use the convert_masks.py script to convert the provided masks in .mat format to RGB pngs:

python convert_masks.py \
    --in-dir benchmark_RELEASE/dataset/cls \
    --out-dir benchmark_RELEASE/dataset/pngs

Start training:

python train.py --batch-size 2

Model checkpoints are saved under trained/, and can be used with the predict.py script for testing.

The training code is currently limited to the frontend module, and thus only outputs 16x16 segmentation maps. The augmentation pipeline does mirroring but not cropping or rotation.


Fisher Yu and Vladlen Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, 2016

Comments
  • training and validation loss nan

    training and validation loss nan

    First of all I just want to thank you for the great work. I am having an issue during training, my loss and val_loss is nan, however I am still getting values for accuracy and val_acc. I am training on the PASCAL_VOC 2012 dataset with the segmentation class pngs. rsz_screenshot_from_2017-08-09_17-24-13

    keras 1.2.1 & 2.0.6 tensorflow-gpu 1.2.1 python 3.6.1

    opened by Barfknecht 9
  • Fine tuning ...

    Fine tuning ...

    Hello,

    You have provided the pre-trained model of VOC. I have a small dataset with 2 classes, which I annotated based on VOC and I want to fine-tune it. Would you please guide me through the process?

    opened by MyVanitar 8
  • Modifying number of class

    Modifying number of class

    Hi Nicolov,

    Thanks for the great work! I tried to train new dataset by generating my own set of jpg and png masks. However I realized it only works for pre-defined 20 classes. For example I wanted to re-train this network to segment screws from background, I wasn't able to find way to add new classes but to use a existed color 0x181818 which was originally trained for cats. After training it did segmented the screw. However I'm still wondering is there any way to change the number of classes and specify which color value are associated with certain class?

    opened by francisbitontistudio 7
  • Black image after segmentation

    Black image after segmentation

    Hi! I have val accuracy = 1, but when i am trying to predict mask on the image from train set it displays me black image. Does anybody know what is the reason of this behaviour?

    opened by dimaxano 7
  • docker running error

    docker running error

    Hi, @nicolov ,

    For the caffe weight conversion, I got the following error:

    (tf_1.0) [email protected]:/data/code/segmentation_keras/conversion# docker run -v $(pwd):/workspace -ti `docker build -q .`
    Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?
    "docker run" requires at least 1 argument(s).
    See 'docker run --help'.
    
    Usage:  docker run [OPTIONS] IMAGE [COMMAND] [ARG...]
    
    Run a command in a new container
    (tf_1.0) ro[email protected]:/data/code/segmentation_keras/conversion#
    
    

    It shows that docker daemon is not running. Any other command should I input before it?

    Thanks

    opened by amiltonwong 7
  • the way of loading the weight

    the way of loading the weight

    Hi nicolov,

    In the post, you explained how to do the weight conversion. Due to the development environment constraints, it is a little bit hard for me to follow exactly your step.

    In keras blog, author also show a way to load VGG16 weight from Keras directly. Do you think this weight can be used for your implementation? Do we have to use the converted caffe model weight for pascal_voc. The data set I will be using is of different domain with the data set published in the paper. Thanks for your advice.

    capture

    opened by wenouyang 5
  • Problems with CuDNN library

    Problems with CuDNN library

    While running train.py, this is the error message: Epoch 1/20 E tensorflow/stream_executor/cuda/cuda_dnn.cc:378] Loaded runtime CuDNN library: 6021 (compatibility version 6000) but source was compiled with 5105 (compatibility version 5100). If using a binary install, upgrade your CuDNN library to match. If building from sources, make sure the library loaded at runtime matches a compatible version specified during compile configuration.

    Since I don't have the root account, I can't install CuDNN v5. Do you know how I can fix this? Thanks!

    opened by Yuren-Zhong 4
  • IoU results

    IoU results

    Have you by any chance compared this to the original implementation with regards to the mean IoU? If so, what implementation of IoU did you use and what were your results?

    opened by Barfknecht 4
  • about the required pre-trained vgg model

    about the required pre-trained vgg model

    Hi, @nicolov ,

    According to this line, vgg_conv.npy is needed as pre-trained vgg model in training. Could you list the download location for corresponding caffemodel and prototxt file? And, is the conversion step the same as here?

    Thanks!

    opened by amiltonwong 4
  • regarding loading_weights

    regarding loading_weights

    Hi nicolov,

    In the train.py, you have included the function of load_weights(model, weights_path):. My understanding is that you are trying to load a pre-training vcg model. If I do not want to use this pretrained model because the problem I am working one may belong to a totally different domain, should I just skip calling this load_weights function? Or using a pre-trained model is always preferable, I am kind of confusing about this.

    In the notes, you mentioned that The training code is currently limited to the frontend module, and thus only outputs 16x16 segmentation maps. If I would like to leverage this code for my own data set, what are the modifications that I have to make? Do I still have to load the weights?

    Thank you very much!

    opened by wenouyang 4
  • Cannot locate Dockerfile: Dockerfile

    Cannot locate Dockerfile: Dockerfile

    Probably a rookie error but when I am trying to run the conversion step in conversion by running the docker I get the following error:

    $sudo docker run -v $(pwd):/workspace -ti `docker build -q .`
    time="2017-02-09T09:15:11-08:00" level=fatal msg="Cannot locate Dockerfile: Dockerfile" 
    docker: "run" requires a minimum of 1 argument. See 'docker run --help'.
    
    opened by mongoose54 4
  • Training freezes

    Training freezes

    On executing command: python train.py --batch-size 2 ,training freezes at last step of first epoch.

    All the libraries are according to the requirement.txt file

    opened by ghost 1
  • AtrousConvolution2D vs.Conv2DTranspose

    AtrousConvolution2D vs.Conv2DTranspose

    Hi @nicolov I was wondering whether in your model, you wouldn't need to have a Conv2DTranspose or Upsample layer to compensate for the maxpool and obtain predictions with the same size as your input image?

    opened by tinalegre 0
  • How to handle high resolution  images

    How to handle high resolution images

    Hello @nicolov ,

    let me first express my appreciation to your work in image segmentation its great (Y)

    small suggestion , i just want to notify you that there is a missing -- in input parsing . very minor change

    parser.add_argument('--input_path', nargs='?', default='images/cat.jpg',
                            help='Required path to input image') 
    

    I'm hoping you can help me in understanding how to handle high res images as 1028 and 4k ,

    also in the code i found you set input_width, input_height = 900, 900 and label_margin = 186 can you please illustrate what is the reason for this static number and how they effect on the output high and width

    output_height = input_height - 2 * label_margin
    output_width = input_width - 2 * label_margin
    
    opened by engahmed1190 2
  • Context module training implementation plans

    Context module training implementation plans

    Thanks for creating this implementation. Do you have any plans to implement training of the context module (to allow producing full resolution segmentation maps)?

    opened by OliverColeman 3
  • palette conversion not needed

    palette conversion not needed

    https://github.com/nicolov/segmentation_keras/blob/master/convert_masks.py isn't necessary.

    Just use Pillow and you can load the classes separately from the color palette, which means it will already be in the format you want!

    from https://github.com/aurora95/Keras-FCN/blob/master/utils/SegDataGenerator.py#L203

                    from PIL import Image
                    label = Image.open(label_filepath)
                    if self.save_to_dir and self.palette is None:
                        self.palette = label.palette
    

    cool right?

    opened by ahundt 6
Releases(caffemodel)
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Age Progression/Regression by Conditional Adversarial Autoencoder

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre

Zhifei Zhang 603 Dec 22, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023