Age Progression/Regression by Conditional Adversarial Autoencoder

Overview

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)

TensorFlow implementation of the algorithm in the paper Age Progression/Regression by Conditional Adversarial Autoencoder.

Thanks to the Pytorch implementation by Mattan Serry, Hila Balahsan, and Dor Alt.

Pre-requisites

  • Python 2.7x

  • Scipy 1.0.0

  • TensorFlow (r0.12)

    • Please note that you will get errors if running with TensorFlow r1.0 because the definition of input arguments of some functions have changed, e.g., tf.concat and tf.nn.sigmoid_cross_entropy_with_logits.
  • The code is updated to run with Tensorflow 1.7.0, and an initial model is provided to better initialize the network. The old version is backed up to the folder old_version.

Datasets

Prepare the training dataset

You may use any dataset with labels of age and gender. In this demo, we use the UTKFace dataset. It is better to use aligned and cropped faces. Please save and unzip UTKFace.tar.gz to the folder data.

Training

$ python main.py

The training process has been tested on NVIDIA TITAN X (12GB). The training time for 50 epochs on UTKFace (23,708 images in the size of 128x128x3) is about two and a half hours.

During training, a new folder named save will be created, including four sub-folders: summary, samples, test, and checkpoint.

  • samples saves the reconstructed faces at each epoch.
  • test saves the testing results at each epoch (generated faces at different ages based on input faces).
  • checkpoint saves the model.
  • summary saves the batch-wise losses and intermediate outputs. To visualize the summary,
$ cd save/summary
$ tensorboard --logdir .

After training, you can check the folders samples and test to visualize the reconstruction and testing performance, respectively. The following shows the reconstruction (left) and testing (right) results. The first row in the reconstruction results (left) are testing samples that yield the testing results (right) in the age ascending order from top to bottom.

The reconstruction loss vs. epoch is shown below, which was passed through a low-pass filter for visualization purpose. The original record is saved in folder summary.

Custom Training

$ python main.py
    --dataset		default 'UTKFace'. Please put your own dataset in ./data
    --savedir		default 'save'. Please use a meaningful name, e.g., save_init_model.
    --epoch		default 50.
    --use_trained_model	default True. If use a trained model, savedir specifies the model name. 
    --use_init_model	default True. If load the trained model failed, use the init model save in ./init_model 

Testing

$ python main.py --is_train False --testdir your_image_dir --savedir save

Note: savedir specifies the model name saved in the training. By default, the trained model is saved in the folder save (i.e., the model name). Then, it is supposed to print out the following message.

  	Building graph ...

	Testing Mode

	Loading pre-trained model ...
	SUCCESS ^_^

	Done! Results are saved as save/test/test_as_xxx.png

Specifically, the testing faces will be processed twice, being considered as male and female, respectively. Therefore, the saved files are named test_as_male.png and test_as_female.png, respectively. To achieve better results, it is necessary to train on a large and diverse dataset.

A demo of training process

The first row shows the input faces of different ages, and the other rows show the improvement of the output faces at every other epoch. From top to bottom, the output faces are in the age ascending order.

Files

  • FaceAging.py is a class that builds and initializes the model, and implements training and testing related stuff
  • ops.py consists of functions called FaceAging.py to implement options of convolution, deconvolution, fully connection, leaky ReLU, load and save images.
  • main.py demonstrates FaceAging.py.

Citation

Zhifei Zhang, Yang Song, and Hairong Qi. "Age Progression/Regression by Conditional Adversarial Autoencoder." IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

@inproceedings{zhang2017age,
  title={Age Progression/Regression by Conditional Adversarial Autoencoder},
  author={Zhang, Zhifei and Song, Yang and Qi, Hairong},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2017}
}

Spotlight presentation

Owner
Zhifei Zhang
Zhifei Zhang
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic

Chang Liu 54 Dec 01, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022