[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

Overview

RetrievalFuse

Paper | Project Page | Video

RetrievalFuse: Neural 3D Scene Reconstruction with a Database
Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan, Matthias Nießner, Angela Dai
ICCV2021

This repository contains the code for the ICCV 2021 paper RetrievalFuse, a novel approach for 3D reconstruction from low resolution distance field grids and from point clouds.

In contrast to traditional generative learned models which encode the full generative process into a neural network and can struggle with maintaining local details at the scene level, we introduce a new method that directly leverages scene geometry from the training database.

File and Folders


Broad code structure is as follows:

File / Folder Description
config/super_resolution Super-resolution experiment configs
config/surface_reconstruction Surface reconstruction experiment configs
config/base Defaults for configurations
config/config_handler.py Config file parser
data/splits Training and validation splits for different datasets
dataset/scene.py SceneHandler class for managing access to scene data samples
dataset/patched_scene_dataset.py Pytorch dataset class for scene data
external/ChamferDistancePytorch For calculating rough chamfer distance between prediction and target while training
model/attention.py Attention, folding and unfolding modules
model/loss.py Loss functions
model/refinement.py Refinement network
model/retrieval.py Retrieval network
model/unet.py U-Net model used as a backbone in refinement network
runs/ Checkpoint and visualizations for experiments dumped here
trainer/train_retrieval.py Lightning module for training retrieval network
trainer/train_refinement.py Lightning module for training refinement network
util/arguments.py Argument parsing (additional arguments apart from those in config)
util/filesystem_logger.py For copying source code for each run in the experiment log directory
util/metrics.py Rough metrics for logging during training
util/mesh_metrics.py Final metrics on meshes
util/retrieval.py Script to dump retrievals once retrieval networks have been trained; needed for training refinement.
util/visualizations.py Utility scripts for visualizations

Further, the data/ directory has the following layout

data                    # root data directory
├── sdf_008             # low-res (8^3) distance fields
    ├── 
   
         
        ├── 
    
     
        ├── 
     
      
        ├── 
      
       
        ...
    ├── 
       
         ... ├── sdf_016 # low-res (16^3) distance fields ├── 
        
          ├── 
         
           ├── 
          
            ├── 
           
             ... ├── 
            
              ... ├── sdf_064 # high-res (64^3) distance fields ├── 
             
               ├── 
              
                ├── 
               
                 ├── 
                
                  ... ├── 
                 
                   ... ├── pc_20K # point cloud inputs ├── 
                  
                    ├── 
                   
                     ├── 
                    
                      ├── 
                     
                       ... ├── 
                      
                        ... ├── splits # train/val splits ├── size # data needed by SceneHandler class (autocreated on first run) ├── occupancy # data needed by SceneHandler class (autocreated on first run) 
                      
                     
                    
                   
                  
                 
                
               
              
             
            
           
          
         
        
       
      
     
    
   

Dependencies


Install the dependencies using pip ```bash pip install -r requirements.txt ``` Be sure that you pull the `ChamferDistancePytorch` submodule in `external`.

Data Preparation


For ShapeNetV2 and Matterport, get the appropriate meshes from the datasets. For 3DFRONT get the 3DFUTURE meshes and 3DFRONT scripts. For getting 3DFRONT meshes use our fork of 3D-FRONT-ToolBox to create room meshes.

Once you have the meshes, use our fork of sdf-gen to create distance field low-res inputs and high-res targets. For creating point cloud inputs simply use trimesh.sample.sample_surface (check util/misc/sample_scene_point_clouds). Place the processed data in appropriate directories:

  • data/sdf_008/ or data/sdf_016/ for low-res inputs

  • data/pc_20K/ for point clouds inputs

  • data/sdf_064/ for targets

Training the Retrieval Network


To train retrieval networks use the following command:

python trainer/train_retrieval.py --config config/<config> --val_check_interval 5 --experiment retrieval --wandb_main --sanity_steps 1

We provide some sample configurations for retrieval.

For super-resolution, e.g.

  • config/super_resolution/ShapeNetV2/retrieval_008_064.yaml
  • config/super_resolution/3DFront/retrieval_008_064.yaml
  • config/super_resolution/Matterport3D/retrieval_016_064.yaml

For surface-reconstruction, e.g.

  • config/surface_reconstruction/ShapeNetV2/retrieval_128_064.yaml
  • config/surface_reconstruction/3DFront/retrieval_128_064.yaml
  • config/surface_reconstruction/Matterport3D/retrieval_128_064.yaml

Once trained, create the retrievals for train/validation set using the following commands:

python util/retrieval.py  --mode map --retrieval_ckpt <trained_retrieval_ckpt> --config <retrieval_config>
python util/retrieval.py --mode compose --retrieval_ckpt <trained_retrieval_ckpt> --config <retrieval_config> 

Training the Refinement Network


Use the following command to train the refinement network

python trainer/train_refinement.py --config <config> --val_check_interval 5 --experiment refinement --sanity_steps 1 --wandb_main --retrieval_ckpt <retrieval_ckpt>

Again, sample configurations for refinement are provided in the config directory.

For super-resolution, e.g.

  • config/super_resolution/ShapeNetV2/refinement_008_064.yaml
  • config/super_resolution/3DFront/refinement_008_064.yaml
  • config/super_resolution/Matterport3D/refinement_016_064.yaml

For surface-reconstruction, e.g.

  • config/surface_reconstruction/ShapeNetV2/refinement_128_064.yaml
  • config/surface_reconstruction/3DFront/refinement_128_064.yaml
  • config/surface_reconstruction/Matterport3D/refinement_128_064.yaml

Visualizations and Logs


Visualizations and checkpoints are dumped in the `runs/` directory. Logs are uploaded to the user's [Weights&Biases](https://wandb.ai/site) dashboard.

Citation


If you find our work useful in your research, please consider citing:
@inproceedings{siddiqui2021retrievalfuse,
  title = {RetrievalFuse: Neural 3D Scene Reconstruction with a Database},
  author = {Siddiqui, Yawar and Thies, Justus and Ma, Fangchang and Shan, Qi and Nie{\ss}ner, Matthias and Dai, Angela},
  booktitle = {Proc. International Conference on Computer Vision (ICCV)},
  month = oct,
  year = {2021},
  doi = {},
  month_numeric = {10}
}

License


The code from this repository is released under the MIT license.
Owner
Yawar Nihal Siddiqui
Yawar Nihal Siddiqui
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
Implementation of RegretNet with Pytorch

Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network

Horris zhGu 1 Nov 05, 2021
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022