Light-Head R-CNN

Overview

Light-head R-CNN

Introduction

We release code for Light-Head R-CNN.

This is my best practice for my research.

This repo is organized as follows:

light_head_rcnn/
    |->experiments
    |    |->user
    |    |    |->your_models
    |->lib       
    |->tools
    |->output

Main Results

  1. We train on COCO trainval which includes 80k training and 35k validation images. Test on minival which is a 5k subset in validation datasets. Noticing test-dev should be little higher than minival.
  2. We provide some crutial ablation experiments details, and it is easy to diff the difference.
  3. We share our training logs in GoogleDrive output folder, which contains dump models, training loss and speed of each steps. (experiments are done on 8 titan xp, and 2batches/per_gpu. Training should be within one day.)
  4. Because the limitation of the time, extra experiments are comming soon.
Model Name [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
R-FCN, ResNet-v1-101
our reproduce baseline
35.5 54.3 33.8 12.8 34.9 46.1
Light-Head R-CNN
ResNet-v1-101
38.2 60.9 41.0 20.9 42.2 52.8
Light-Head,ResNet-v1-101
+align pooling
39.3 61.0 42.4 22.2 43.8 53.2
Light-Head,ResNet-v1-101
+align pooling + nms0.5
40.0 62.1 42.9 22.5 44.6 54.0

Experiments path related to model:

experiments/lizeming/rfcn_reproduce.ori_res101.coco.baseline
experiments/lizeming/light_head_rcnn.ori_res101.coco 
experiments/lizeming/light_head_rcnn.ori_res101.coco.ps_roialign
experiments/lizeming/light_head_rcnn.ori_res101.coco.ps_roialign

Requirements

  1. tensorflow-gpu==1.5.0 (We only test on tensorflow 1.5.0, early tensorflow is not supported because of our gpu nms implementation)
  2. python3. We recommend using Anaconda as it already includes many common packages. (python2 is not tested)
  3. Python packages might missing. pls fix it according to the error message.

Installation, Prepare data, Testing, Training

Installation

  1. Clone the Light-Head R-CNN repository, and we'll call the directory that you cloned Light-Head R-CNNN as ${lighthead_ROOT}.
git clone https://github.com/zengarden/light_head_rcnn
  1. Compiling
cd ${lighthead_ROOT}/lib;
bash make.sh

Make sure all of your compiling is successful. It may arise some errors, it is useful to find some common compile errors in FAQ

  1. Create log dump directory, data directory.
cd ${lighthead_ROOT};
mkdir output
mkdir data

Prepare data

data should be organized as follows:

data/
    |->imagenet_weights/res101.ckpt
    |->MSCOCO
    |    |->odformat
    |    |->instances_xxx.json
    |    |train2014
    |    |val2014

Download res101 basemodel:

wget -v http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz
tar -xzvf resnet_v1_101_2016_08_28.tar.gz
mv resnet_v1_101.ckpt res101.ckpt

We transfer instances_xxx.json to odformat(object detection format), each line in odformat is an annotation(json) for one image. Our transformed odformat is shared in GoogleDrive odformat.zip .

Testing

  1. Using -d to assign gpu_id for testing. (e.g. -d 0,1,2,3 or -d 0-3 )
  2. Using -s to visualize the results.
  3. Using '-se' to specify start_epoch for testing.

We share our experiments output(logs) folder in GoogleDrive. Download it and place it to ${lighthead_ROOT}, then test our release model.

e.g.

cd experiments/lizeming/light_head_rcnn.ori_res101.coco.ps_roialign
python3 test.py -d 0-7 -se 26

Training

We provide common used train.py in tools, which can be linked to experiments folder.

e.g.

cd experiments/lizeming/light_head_rcnn.ori_res101.coco.ps_roialign
python3 config.py -tool
cp tools/train.py .
python3 train.py -d 0-7

Features

This repo is designed be fast and simple for research. There are still some can be improved: anchor_target and proposal_target layer are tf.py_func, which means it will run on cpu.

Disclaimer

This is an implementation for Light-Head R-CNN, it is worth noting that:

  • The original implementation is based on our internal Platform used in Megvii. There are slight differences in the final accuracy and running time due to the plenty details in platform switch.
  • The code is tested on a server with 8 Pascal Titian XP gpu, 188.00 GB memory, and 40 core cpu.
  • We rewrite a faster nms in our inner platform, while hear we use tf.nms instead.

Citing Light-Head R-CNN

If you find Light-Head R-CNN is useful in your research, pls consider citing:

@article{li2017light,
  title={Light-Head R-CNN: In Defense of Two-Stage Object Detector},
  author={Li, Zeming and Peng, Chao and Yu, Gang and Zhang, Xiangyu and Deng, Yangdong and Sun, Jian},
  journal={arXiv preprint arXiv:1711.07264},
  year={2017}
}

FAQ

  • fatal error: cuda/cuda_config.h: No such file or directory

First, find where is cuda_config.h.

e.g.

find /usr/local/lib/ | grep cuda_config.h

then export your cpath, like:

export CPATH=$CPATH:/usr/local/lib/python3.5/dist-packages/external/local_config_cuda/cuda/
Owner
jemmy li
jemmy li
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
sktime companion package for deep learning based on TensorFlow

NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and

sktime 573 Jan 05, 2023
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Bytedance Inc. 2.5k Jan 06, 2023