Project NII pytorch scripts

Overview

project-NII-pytorch-scripts

By Xin Wang, National Institute of Informatics, since 2021

I am a new pytorch user. If you have any suggestions or questions, pleas email wangxin at nii dot ac dot jp

Table of Contents


1. Note

For tutorials on neural vocoders

Tutorials are available in ./tutorials. Please follow the ./tutorials/README and work in this folder first

cd ./tutorials
head -n 2 README.md
# Hands-on materials for neural vocoders

For other projects

Just follow the rest of the README.

The repository is relatively large. You may use --depth 1 option to skip unnecessary files.

git clone --depth 1 https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts.git

Updates

2022-01-08: upload hn-sinc-nsf + hifi-gan

2022-01-08: upload RawNet2 for anti-spoofing

2. Overview

This repository hosts Pytorch codes for the following projects:

2.1 Neural source-filter waveform model

./project/01-nsf

  1. Cyclic-noise neural source-filter waveform model (NSF)

  2. Harmonic-plus-noise NSF with trainable sinc filter (Hn-sinc-NSF)

  3. Harmonic-plus-noise NSF with fixed FIR filter (Hn-NSF)

  4. Hn-sinc-NSF + HiFiGAN discriminator

All the projects include a pre-trained model on CMU-arctic database (4 speakers) and a demo script to run, train, do inference. Please check ./project/01-nsf/README.

Generated samples from pre-trained models are in ./project/01-nsf/*/__pre_trained/output. If not, please run the demo script to produce waveforms using pre-trained models.

Tutorial on NSF models is also available in ./tutorials

Note that this is the re-implementation of the projects based on CURRENNT. All the papers published so far used CURRENNT implementation.

Many samples can be found on NSF homepage.

2.2 Other neural waveform models

./project/05-nn-vocoders

  1. WaveNet vocoder

  2. WaveGlow

  3. Blow

  4. iLPCNet

All the projects include a pre-trained model and a one-click demo script. Please check ./project/05-nn-vocoders/README.

Generated samples from pre-trained models are in ./project/05-nn-vocoders/*/__pre_trained/output.

Tutorial is also available in ./tutorials

2.3 ASVspoof project with toy example

./project/04-asvspoof2021-toy

It takes time to download ASVspoof2019 database. Therefore, this project demonstrates how to train and evaluate the anti-spoofing model using a toy dataset.

Please try this project before checking other ASVspoof projects below.

A similar project is adopted for ASVspoof2021 LFCC-LCNN baseline, although the LFCC front-end is slightly different.

Please check ./project/04-asvspoof2021-toy/README.

2.4 Speech anti-spoofing for ASVspoof 2019 LA

./project/03-asvspoof-mega

This is for this anti-spoofing project (A Comparative Study on Recent Neural Spoofing Countermeasures for Synthetic Speech Detection, paper on arxiv).

There were 36 systems investigated, each of which was trained and evaluated for 6 rounds with different random seeds.

EER-mintDCF

This project is later extended to a book chapter called A Practical Guide to Logical Access Voice Presentation Attack Detection. Single system using RawNet2 is added, and score fusion is added.

EER-mintDCF

Pre-trained models, scores, training recipes are all available. Please check ./project/03-asvspoof-mega/README.

2.5 (Preliminary) speech anti-spoofing

./project/02-asvspoof

  1. Baseline LFCC + LCNN-binary-classifier (lfcc-lcnn-sigmoid)

  2. LFCC + LCNN + angular softmax (lfcc-lcnn-a-softmax)

  3. LFCC + LCNN + one-class softmax (lfcc-lcnn-ocsoftmax)

  4. LFCC + ResNet18 + one-class softmax (lfcc-restnet-ocsoftmax)

This is a pilot test on ASVspoof2019 LA task. I trained each system for 6 times on various GPU devices (single V100 or P100 card), each time with a different random initial seed. Figure below shows the DET curves for these systems: det_curve

The results vary a lot when simply changing the initial random seeds, even with the same random seed, Pytorch environment, and deterministic algorithm selected. This preliminary test motivated the study in ./project-03-asvspoof-mega.

For LCNN, please check this paper; for LFCC, please check this paper; for one-class softmax in ASVspoof, please check this paper.

3. Python environment

You may use ./env.yml to create the environment:

# create environment
conda env create -f env.yml

# load environment (whose name is pytorch-1.6)
conda activate pytorch-1.6

4. How to use

Take project/01-nsf/cyc-noise-nsf as an example:

# cd into one project
cd project/01-nsf/cyc-noise-nsf-4

# add PYTHONPATH and activate conda environment
source ../../../env.sh 

# run the script
bash 00_demo.sh

The printed info will show what is happening. The script may need 1 day or more to finish.

You may also put the job to the background rather than waiting for the job in front of the terminal:

# run the script in background
bash 00_demo.sh > log_batch 2>&1 &

The above steps will download the CMU-arctic data, run waveform generation using a pre-trained model, and train a new model.

5. Project design and convention

Data format

  • Waveform: 16/32-bit PCM or 32-bit float WAV that can be read by scipy.io.wavfile.read

  • Other data: binary, float-32bit, little endian (numpy dtype ). The data can be read in python by:

# for a data of shape [N, M]
f = open(filepath,'rb')
datatype = np.dtype(('
   ,(M,)))
data = np.fromfile(f,dtype=datatype)
f.close()

I assume data should be stored in c_continuous format (row-major). There are helper functions in ./core_scripts/data_io/io_tools.py to read and write binary data:

# create a float32 data array
import numpy as np
data = np.asarray(np.random.randn(5, 3), dtype=np.float32)

# write to './temp.bin' and read it as data2
import core_scripts.data_io.io_tools as readwrite
readwrite.f_write_raw_mat(data, './temp.bin')
data2 = readwrite.f_read_raw_mat('./temp.bin', 3)

# result should 0
data - data2

More instructions can be found in the Jupyter notebook ./tutorials/c01_data_format.ipynb.

Files in this repository

Name Function
./core_scripts scripts to manage the training process, data io, and so on
./core_modules finished pytorch modules
./sandbox new functions and modules to be test
./project project directories, and each folder correspond to one model for one dataset
./project/*/*/main.py script to load data and run training and inference
./project/*/*/model.py model definition based on Pytorch APIs
./project/*/*/config.py configurations for training/val/test set data

The motivation is to separate the training and inference process, the model definition, and the data configuration. For example:

  • To define a new model, change model.py

  • To run on a new database, change config.py

How the script works

The script starts with main.py and calls different function for model training and inference.

During training:

     <main.py>        Entry point and controller of training process
        |           
   Argument parse     core_scripts/config_parse/arg_parse.py
   Initialization     core_scripts/startup_config.py
   Choose device     
        | 
Initialize & load     core_scripts/data_io/customize_dataset.py
training data set
        |----------|
        .     Load data set   <config.py> 
        .     configuration 
        .          |
        .     Loop over       core_scripts/data_io/customize_dataset.py
        .     data subset
        .          |       
        .          |---------|
        .          .    Load one subset   core_scripts/data_io/default_data_io.py
        .          .         |
        .          |---------|
        .          |
        .     Combine subsets 
        .     into one set
        .          |
        |----------|
        |
Initialize & load 
development data set  
        |
Initialize Model     <model.py>
Model(), Loss()
        | 
Initialize Optimizer core_scripts/op_manager/op_manager.py
        |
Load checkpoint      --trained-model option to main.py
        |
Start training       core_scripts/nn_manager/nn_manager.py f_train_wrapper()
        |             
        |----------|
        .          |
        .     Loop over training data
        .     for one epoch
        .          |
        .          |-------|    core_scripts/nn_manager/nn_manager.py f_run_one_epoch()
        .          |       |    
        .          |  Loop over 
        .          |  training data
        .          |       |
        .          |       |-------|
        .          |       .    get data_in, data_tar, data_info
        .          |       .    Call data_gen <- Model.forward(...)   <mode.py>
        .          |       .    Call Loss.compute()                   <mode.py>
        .          |       .    loss.backward()
        .          |       .    optimizer.step()
        .          |       .       |
        .          |       |-------|
        .          |       |
        .          |  Save checkpoint 
        .          |       |
        .          |  Early stop?
        .          |       | No  \
        .          |       |      \ Yes
        .          |<------|       |
        .                          |
        |--------------------------|
       Done

A detailed flowchat is ./misc/APPENDIX_1.md. This may be useful if you want to hack on the code.

6 On NSF projects (./project/01-nsf)

Differences from CURRENNT implementation

There may be more, but here are the important ones:

  • "Batch-normalization": in CURRENNT, "batch-normalization" is conducted along the length sequence, i.e., assuming each frame as one sample;

  • No bias in CNN and FF: due to the 1st point, NSF in this repository uses bias=false for CNN and feedforward layers in neural filter blocks, which can be helpful to make the hidden signals around 0;

  • Smaller learning rate: due to the 1st point, learning rate in this repository is decreased from 0.0003 to a smaller value. Accordingly, more training epochs are required;

  • STFT framing/padding: in CURRENNT, the first frame starts from the 1st step of a signal; in this Pytorch repository (as Librosa), the first frame is centered around the 1st step of a signal, and the frame is padded with 0;

  • STFT backward: in CURRENNT, STFT backward follows the steps in this paper; in Pytorch repository, backward over STFT is done by the Pytorch library.

  • ...

The learning curves look similar to the CURRENNT version. learning_curve

24kHz

Most of my experiments are done on 16 kHz waveforms. For 24 kHz waveforms, FIR or sinc digital filters in the model may be changed for better performance:

  1. hn-nsf: lp_v, lp_u, hp_v, and hp_u are calculated for 16 kHz configurations. For different sampling rate, you may use this online tool http://t-filter.engineerjs.com to get the filter coefficients. In this case, the stop-band for lp_v and lp_u is extended to 12k, while the pass-band for hp_v and hp_u is extended to 12k. The reason is that, no matter what is the sampling rate, the actual formats (in Hz) and spectral of sounds don't change with the sampling rate;

  2. hn-sinc-nsf and cyc-noise-nsf: for the similar reason above, the cut-off-frequency value (0, 1) should be adjusted. I will try (hidden_feat * 0.2 + uv * 0.4 + 0.3) * 16 / 24 in model.CondModuleHnSincNSF.get_cut_f();

Links

The end

Owner
Yamagishi and Echizen Laboratories, National Institute of Informatics
Yamagishi and Echizen Laboratories, National Institute of Informatics, Japan
Yamagishi and Echizen Laboratories, National Institute of Informatics
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022