Semi-automated OpenVINO benchmark_app with variable parameters

Overview

Semi-automated OpenVINO benchmark_app with variable parameters

Description

This program allows the users to specify variable parameters in the OpenVINO benchmark_app and run the benchmark with all combinations of the given parameters automatically.
The program will generate the report file in the CSV format with coded date and time file name ('result_DDmm-HHMMSS.csv'). You can analyze or visualize the benchmark result with MS Excel or a spreadsheet application.

The program is just a front-end for the OpenVINO official benchmark_app.
This program utilizes the benchmark_app as the benchmark core logic. So the performance result measured by this program must be consistent with the one measured by the benchmark_app.
Also, the command line parameters and their meaning are compatible with the benchmark_app.

Requirements

  • OpenVINO 2022.1 or higher
    This program is not compatible with OpenVINO 2021.

How to run

  1. Install required Python modules.
python -m pip install --upgrade pip setuptools
python -m pip install -r requirements.txt
  1. Run the auto benchmark (command line example)
python auto_benchmark_app.py -m resnet.xml -niter 100 -nthreads %1,2,4,8 -nstreams %1,2 -d %CPU,GPU -cdir cache

With this command line, -nthreads has 4 options (1,2,4,8), -nstreams has 2 options (1,2), and -d option has 2 options (CPU,GPU). As the result, 16 (4x2x2) benchmarks will be performed in total.

Parameter options

You can specify variable parameters by adding following prefix to the parameters.

Prefix Type Description/Example
$ range $1,8,2 == range(1,8,2) => [1,3,5,7]
All range() compatible expressions are possible. e.g. $1,5 or $5,1,-1
% list %CPU,GPU => ['CPU', 'GPU'], %1,2,4,8 => [1,2,4,8]
@ ir-models @models == IR models in the './models' dir => ['resnet.xml', 'googlenet.xml', ...]
This option will recursively search the '.xml' files in the specified directory.

Examples of command line

python auto_benchmark_app.py -cdir cache -m resnet.xml -nthreads $1,5 -nstreams %1,2,4,8 -d %CPU,GPU

  • Run benchmark with -nthreads=range(1,5)=[1,2,3,4], -nstreams=[1,2,4,8], -d=['CPU','GPU']. Total 32 combinations.

python auto_benchmark_app.py -m @models -niter 100 -nthreads %1,2,4,8 -nstreams %1,2 -d CPU -cdir cache

  • Run benchmark with -m=[all .xml files in models directory], -nthreads = [1,2,4,8], -nstreams=[1,2].

Example of a result file

The last 4 items in each line are the performance data in the order of 'count', 'duration (ms)', 'latency AVG (ms)', and 'throughput (fps)'.

#CPU: Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz
#MEM: 33947893760
#OS: Windows-10-10.0.22000-SP0
#OpenVINO: 2022.1.0-7019-cdb9bec7210-releases/2022/1
#Last 4 items in the lines : test count, duration (ms), latency AVG (ms), and throughput (fps)
benchmark_app.py,-m,models\FP16\googlenet-v1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,772.55,30.20,129.44
benchmark_app.py,-m,models\FP16\resnet-50-tf.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,1917.62,75.06,52.15
benchmark_app.py,-m,models\FP16\squeezenet1.1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,195.28,7.80,512.10
benchmark_app.py,-m,models\FP16-INT8\googlenet-v1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,104,337.09,24.75,308.53
benchmark_app.py,-m,models\FP16-INT8\resnet-50-tf.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,1000.39,38.85,99.96
benchmark_app.py,-m,models\FP16-INT8\squeezenet1.1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,104,64.22,4.69,1619.38
benchmark_app.py,-m,models\FP32\googlenet-v1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,778.90,30.64,128.39
benchmark_app.py,-m,models\FP32\resnet-50-tf.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,1949.73,76.91,51.29
benchmark_app.py,-m,models\FP32\squeezenet1.1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,182.59,7.58,547.69
benchmark_app.py,-m,models\FP32-INT8\googlenet-v1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,104,331.73,24.90,313.51
benchmark_app.py,-m,models\FP32-INT8\resnet-50-tf.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,968.38,38.45,103.27
benchmark_app.py,-m,models\FP32-INT8\squeezenet1.1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,104,67.70,5.04,1536.23
benchmark_app.py,-m,models\FP16\googlenet-v1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,1536.14,15.30,65.10
benchmark_app.py,-m,models\FP16\resnet-50-tf.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,3655.59,36.50,27.36
benchmark_app.py,-m,models\FP16\squeezenet1.1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,366.73,3.68,272.68
benchmark_app.py,-m,models\FP16-INT8\googlenet-v1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,872.87,8.66,114.56
benchmark_app.py,-m,models\FP16-INT8\resnet-50-tf.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,1963.67,19.54,50.93
benchmark_app.py,-m,models\FP16-INT8\squeezenet1.1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,242.28,2.34,412.74
benchmark_app.py,-m,models\FP32\googlenet-v1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,1506.14,14.96,66.39
benchmark_app.py,-m,models\FP32\resnet-50-tf.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,3593.88,35.88,27.83
benchmark_app.py,-m,models\FP32\squeezenet1.1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,366.28,3.56,273.01
benchmark_app.py,-m,models\FP32-INT8\googlenet-v1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,876.52,8.69,114.09
benchmark_app.py,-m,models\FP32-INT8\resnet-50-tf.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,1934.72,19.25,51.69

END

Owner
Yasunori Shimura
Yasunori Shimura
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022