Semi-automated OpenVINO benchmark_app with variable parameters

Overview

Semi-automated OpenVINO benchmark_app with variable parameters

Description

This program allows the users to specify variable parameters in the OpenVINO benchmark_app and run the benchmark with all combinations of the given parameters automatically.
The program will generate the report file in the CSV format with coded date and time file name ('result_DDmm-HHMMSS.csv'). You can analyze or visualize the benchmark result with MS Excel or a spreadsheet application.

The program is just a front-end for the OpenVINO official benchmark_app.
This program utilizes the benchmark_app as the benchmark core logic. So the performance result measured by this program must be consistent with the one measured by the benchmark_app.
Also, the command line parameters and their meaning are compatible with the benchmark_app.

Requirements

  • OpenVINO 2022.1 or higher
    This program is not compatible with OpenVINO 2021.

How to run

  1. Install required Python modules.
python -m pip install --upgrade pip setuptools
python -m pip install -r requirements.txt
  1. Run the auto benchmark (command line example)
python auto_benchmark_app.py -m resnet.xml -niter 100 -nthreads %1,2,4,8 -nstreams %1,2 -d %CPU,GPU -cdir cache

With this command line, -nthreads has 4 options (1,2,4,8), -nstreams has 2 options (1,2), and -d option has 2 options (CPU,GPU). As the result, 16 (4x2x2) benchmarks will be performed in total.

Parameter options

You can specify variable parameters by adding following prefix to the parameters.

Prefix Type Description/Example
$ range $1,8,2 == range(1,8,2) => [1,3,5,7]
All range() compatible expressions are possible. e.g. $1,5 or $5,1,-1
% list %CPU,GPU => ['CPU', 'GPU'], %1,2,4,8 => [1,2,4,8]
@ ir-models @models == IR models in the './models' dir => ['resnet.xml', 'googlenet.xml', ...]
This option will recursively search the '.xml' files in the specified directory.

Examples of command line

python auto_benchmark_app.py -cdir cache -m resnet.xml -nthreads $1,5 -nstreams %1,2,4,8 -d %CPU,GPU

  • Run benchmark with -nthreads=range(1,5)=[1,2,3,4], -nstreams=[1,2,4,8], -d=['CPU','GPU']. Total 32 combinations.

python auto_benchmark_app.py -m @models -niter 100 -nthreads %1,2,4,8 -nstreams %1,2 -d CPU -cdir cache

  • Run benchmark with -m=[all .xml files in models directory], -nthreads = [1,2,4,8], -nstreams=[1,2].

Example of a result file

The last 4 items in each line are the performance data in the order of 'count', 'duration (ms)', 'latency AVG (ms)', and 'throughput (fps)'.

#CPU: Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz
#MEM: 33947893760
#OS: Windows-10-10.0.22000-SP0
#OpenVINO: 2022.1.0-7019-cdb9bec7210-releases/2022/1
#Last 4 items in the lines : test count, duration (ms), latency AVG (ms), and throughput (fps)
benchmark_app.py,-m,models\FP16\googlenet-v1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,772.55,30.20,129.44
benchmark_app.py,-m,models\FP16\resnet-50-tf.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,1917.62,75.06,52.15
benchmark_app.py,-m,models\FP16\squeezenet1.1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,195.28,7.80,512.10
benchmark_app.py,-m,models\FP16-INT8\googlenet-v1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,104,337.09,24.75,308.53
benchmark_app.py,-m,models\FP16-INT8\resnet-50-tf.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,1000.39,38.85,99.96
benchmark_app.py,-m,models\FP16-INT8\squeezenet1.1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,104,64.22,4.69,1619.38
benchmark_app.py,-m,models\FP32\googlenet-v1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,778.90,30.64,128.39
benchmark_app.py,-m,models\FP32\resnet-50-tf.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,1949.73,76.91,51.29
benchmark_app.py,-m,models\FP32\squeezenet1.1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,182.59,7.58,547.69
benchmark_app.py,-m,models\FP32-INT8\googlenet-v1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,104,331.73,24.90,313.51
benchmark_app.py,-m,models\FP32-INT8\resnet-50-tf.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,100,968.38,38.45,103.27
benchmark_app.py,-m,models\FP32-INT8\squeezenet1.1.xml,-niter,100,-nthreads,1,-nstreams,1,-d,CPU,-cdir,cache,104,67.70,5.04,1536.23
benchmark_app.py,-m,models\FP16\googlenet-v1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,1536.14,15.30,65.10
benchmark_app.py,-m,models\FP16\resnet-50-tf.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,3655.59,36.50,27.36
benchmark_app.py,-m,models\FP16\squeezenet1.1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,366.73,3.68,272.68
benchmark_app.py,-m,models\FP16-INT8\googlenet-v1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,872.87,8.66,114.56
benchmark_app.py,-m,models\FP16-INT8\resnet-50-tf.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,1963.67,19.54,50.93
benchmark_app.py,-m,models\FP16-INT8\squeezenet1.1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,242.28,2.34,412.74
benchmark_app.py,-m,models\FP32\googlenet-v1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,1506.14,14.96,66.39
benchmark_app.py,-m,models\FP32\resnet-50-tf.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,3593.88,35.88,27.83
benchmark_app.py,-m,models\FP32\squeezenet1.1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,366.28,3.56,273.01
benchmark_app.py,-m,models\FP32-INT8\googlenet-v1.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,876.52,8.69,114.09
benchmark_app.py,-m,models\FP32-INT8\resnet-50-tf.xml,-niter,100,-nthreads,2,-nstreams,1,-d,CPU,-cdir,cache,100,1934.72,19.25,51.69

END

Owner
Yasunori Shimura
Yasunori Shimura
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
An Approach to Explore Logistic Regression Models

User-centered Regression An Approach to Explore Logistic Regression Models This tool applies the potential of Attribute-RadViz in identifying correlat

0 Nov 12, 2021
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022