Vaex library for Big Data Analytics of an Airline dataset

Overview

Vaex-Big-Data-Analytics-for-Airline-data

A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics of an Airline dataset.

Author: Nikolas Petrou, MSc in Data Science

Overview

The main part of the work focuses on the exploration a big dataset of 17 GB. Specifically, the dataset contains information on flights within the United States between 1988 and 2018. It can be directly downloaded from: vaex.s3.us-east-2.amazonaws.com.

In addition, in this project the Out-of-Core DataFrames Python library Vaex is employed, in order to visualize, explore acalculate statistics of this big tabular dataset.

The goal of this project is to utilize Vaex to perform an Exploratory Data Analysis (EDA), as well as to predict the arrival delay of a flight using Machine Learning models (regression task).

What is Vaex and why Vaex?

Vaex is a Python library for lazy Out-of-Core DataFrames (similar to Pandas), to visualize and explore big tabular datasets. It can calculate statistics such as mean, sum, count, standard deviation etc, on an N-dimensional grid up to a billion (10^9) objects/rows per second. Visualization is done using histograms, density plots and 3d volume rendering, allowing interactive exploration of big data. Furthermore, Vaex provides wrappers to powerful libraries for predictive models (e.g. Scikit-learn, xgboost) and make them work efficiently with Vaex. Vaex does implement a variety of standard data transformers (e.g. PCA, numerical scalers, categorical encoders) and a very efficient KMeans algorithm that take full advantage. Finally, Vaex uses memory mapping, a zero memory copy policy, and lazy computations for best performance (no memory wasted).

Advantage of using Vaex over using Pandas with a more powerful machine

Switching to a more powerful machine (with more RAM and/or better CPU) may solve some memory issues, but still, Pandas will only use one out of the 32 cores of your fancy machine. With Vaex, all operations are out of the core and executed in parallel and lazily evaluated, allowing for crunching through a billion-row dataset effortlessly.

Data

The dataset has a relatively big size (17 GB), and contains information on flights within the United States between 1988 and 2018. It can be directly downloaded from: vaex.s3.us-east-2.amazonaws.com

Each row-record of the dataset represents an individual flight. Specifically, each record contains information of the airline (UniqueCarrier), airports (origin airport, destination airport) and flight level information such as time schedule (day of week, day of month, month, year), flight distance, departure time and delay, arrival time and delay.

Owner
Nikolas Petrou
M.Sc. Data Science student, University of Cyprus (UCY) Research Assistant at the Laboratory of Internet Computing (LInC) B.Sc degree in Computer Science
Nikolas Petrou
Finding project directories in Python (data science) projects, just like there R rprojroot and here packages

Find relative paths from a project root directory Finding project directories in Python (data science) projects, just like there R here and rprojroot

Daniel Chen 102 Nov 16, 2022
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

6 Oct 11, 2022
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.

Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm

Jacob Schreiber 457 Dec 20, 2022
๐Ÿงช Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

๐Ÿงช๐Ÿ“ˆ ๐Ÿ. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
A CLI tool to reduce the friction between data scientists by reducing git conflicts removing notebook metadata and gracefully resolving git conflicts.

databooks is a package for reducing the friction data scientists while using Jupyter notebooks, by reducing the number of git conflicts between different notebooks and assisting in the resolution of

dataroots 86 Dec 25, 2022
BasstatPL is a package for performing different tabulations and calculations for descriptive statistics.

BasstatPL is a package for performing different tabulations and calculations for descriptive statistics. It provides: Frequency table constr

Angel Chavez 1 Oct 31, 2021
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Modular analysis tools for neurophysiology data

Neuroanalysis Modular and interactive tools for analysis of neurophysiology data, with emphasis on patch-clamp electrophysiology. Functions for runnin

Allen Institute 5 Dec 22, 2021
Find exposed data in Azure with this public blob scanner

BlobHunter A tool for scanning Azure blob storage accounts for publicly opened blobs. BlobHunter is a part of "Hunting Azure Blobs Exposes Millions of

CyberArk 250 Jan 03, 2023
An ETL framework + Monitoring UI/API (experimental project for learning purposes)

Fastlane An ETL framework for building pipelines, and Flask based web API/UI for monitoring pipelines. Project structure fastlane |- fastlane: (ETL fr

Dan Katz 2 Jan 06, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
A program that uses an API and a AI model to get info of sotcks

Stock-Market-AI-Analysis I dont mind anyone using this code but please give me credit A program that uses an API and a AI model to get info of stocks

1 Dec 17, 2021
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
Describing statistical models in Python using symbolic formulas

Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat

Python for Data 866 Dec 16, 2022
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

Himanshu Kumar singh 2 Dec 04, 2021
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022
Geospatial data-science analysis on reasons behind delay in Grab ride-share services

Grab x Pulis Detailed analysis done to investigate possible reasons for delay in Grab services for NUS Data Analytics Competition 2022, to be found in

Keng Hwee 6 Jun 07, 2022
Gaussian processes in TensorFlow

Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow

GPflow 1.7k Jan 06, 2023
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022