Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Overview

Binomial Option Pricing Calculator

Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Background

A derivative is a financial instrument that derives its value from the price of an underlying asset. An option gives the owner the ability to buy or sell the underlying asset at pre-determined price. An option that allows the holder to buy the asset at the pre-determined price (also known as the exercise or strike price) is called a call option. An option that lets the owner sell the underlying asset at the strike price is called a put option. There are three key types of options, a European option allows the holder to exercise ('redeem') the option only at maturity of the option. An American option can be exercised any time before maturity. A Bermudan option is exercisable at pre-deteremined dates decided at the creation of the option.

The binomial pricing method is one of the three most common methods used to value options - the others being the Black-Scholes model and a Monte Carlo simulation. The method predicts the price of the underlying asset at intervals (branches) between now and maturity of the option contract. This creates a tree showing the price movements of the asset, which can be used to find the fair value of the option. Unlike Black-Scholes, the binomial method allows the intrinsic value of the option to be calculated prior to maturity, better representing the value of American and Bermudan options which have the option of early exercise.

Pricing options using this method is done by:

  1. Determining the magnitude that stock prices will rise or fall between each branch.
  2. Calculating the probability that the stock price will move upwards or downward.
  3. Forming the binomial stock price tree with the specified number of branches.
  4. Calculate the payoff of the option at maturity.
  5. Working backwards, value the option by discounting the value of the option at the following nodes using. If the option is American or Bermudan and exercisible at that branch, then the value of the option if it was exercised is calculated, if it is greater than the discoutned value, it becomes the calculated value of the branch.
  6. The value derived at the top of the tree is the fair value of the option today.

Features of the Script

  • Does not require any libraries - it will work in base python3 and immune to changes in libraries
  • Option type is specified as a parameter allowing easy implementations
  • Returns and displays the calculated stock tree

The following assumptions are made by the model:

  • No dividends are paid across the option's life
  • Risk-Free rate is constant across the option's life
  • The price will move up or down each period

Variables and Paramaters

The variables required are:

Name Symbol Description
Stock Price s The current price of the underlying asset (time 0)
Exercise Price x The strike price of the option contract
Time to Maturity t The time until maturity of the option contract (in years)
Risk-Free Rate r The current risk-free rate
Branches/Steps b The number of branches used to value the option
Volatility v The volatility of the price movements in the underlying asset

Optional variables are:

Name Symbol Description
Option Nationality nat 'A' for American (default), 'B' for Bermudan, 'E' for European
Option Type typ 'C' for Call (default), 'P' for Put
Print Results prnt True to enable printing (default), False to disable
Exercisible Periods exP The branches that a Bermudan option can be exercised

Related Projects

Beta calculator with stock data downloader: https://github.com/sammuhrai/beta-calculator

Disclaimer

Script is for educational purposes and is not to be taken as financial advice.

Owner
sammuhrai
sammuhrai
Python package for analyzing sensor-collected human motion data

Python package for analyzing sensor-collected human motion data

Simon Ho 71 Nov 05, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8k Dec 29, 2022
Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

BigScience Workshop 3 Mar 03, 2022
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
Bearsql allows you to query pandas dataframe with sql syntax.

Bearsql adds sql syntax on pandas dataframe. It uses duckdb to speedup the pandas processing and as the sql engine

14 Jun 22, 2022
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
pipeline for migrating lichess data into postgresql

How Long Does It Take Ordinary People To "Get Good" At Chess? TL;DR: According to 5.5 years of data from 2.3 million players and 450 million games, mo

Joseph Wong 182 Nov 11, 2022
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP.

Overview Welcome to the Step-X repository. This repo is dedicated to the data extraction and manipulation of the World Bank's database called STEP. Be

Keanu Pang 0 Jan 20, 2022
Statistical Rethinking course winter 2022

Statistical Rethinking (2022 Edition) Instructor: Richard McElreath Lectures: Uploaded Playlist and pre-recorded, two per week Discussion: Online, F

Richard McElreath 3.9k Dec 31, 2022
Pizza Orders Data Pipeline Usecase Solved by SQL, Sqoop, HDFS, Hive, Airflow.

PizzaOrders_DataPipeline There is a Tony who is owning a New Pizza shop. He knew that pizza alone was not going to help him get seed funding to expand

Melwin Varghese P 4 Jun 05, 2022
📊 Python Flask game that consolidates data from Nasdaq, allowing the user to practice buying and selling stocks.

Web Trader Web Trader is a trading website that consolidates data from Nasdaq, allowing the user to search up the ticker symbol and price of any stock

Paulina Khew 21 Aug 30, 2022
Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles

Correlation-Study-Climate-Change-EV-Adoption Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles I

Jonathan Feng 1 Jan 03, 2022
Convert tables stored as images to an usable .csv file

Convert an image of numbers to a .csv file This Python program aims to convert images of array numbers to corresponding .csv files. It uses OpenCV for

711 Dec 26, 2022
BIGDATA SIMULATION ONE PIECE WORLD CENSUS

ONE PIECE is a Japanese manga of great international success. The story turns inhabited in a fictional world, tells the adventures of a young man whose body gained rubber properties after accidentall

Maycon Cypriano 3 Jun 30, 2022
Program that predicts the NBA mvp based on data from previous years.

NBA MVP Predictor A machine learning model using RandomForest Regression that predicts NBA MVP's using player data. Explore the docs » View Demo · Rep

Muhammad Rabee 1 Jan 21, 2022