Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Overview

Fine-tuning wav2vec2 for speaker recognition

This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each training run can be found here:

Installing dependencies

If poetry is not installed, see https://python-poetry.org/docs/. We also expect at least python 3.8 on the system. If this is not the case, look into https://github.com/pyenv/pyenv for an easy tool to install a specific python version on your system.

The python dependencies can be installed (in a project-specific virtual environment) by:

$ poetry shell  # enter project-specific virtual environment

From now on, every command which should be run under the virtual environment (which looks like (wav2vec-speaker-identification- -py ) $ ) which is shortened to (xxx) $ .

Then install all required python packages:

(xxx) $ pip install -U pip
(xxx) $ poetry update # install dependencies 

Because PyTorch is currently serving the packages on PiPY incorrectly, we need to use pip to install the specific PyTorch versions we need.

(xxx) $ pip install -r requirements/requirements_cuda101.txt # if CUDA 10.1
(xxx) $ pip install -r requirements/requirements_cuda110.txt # if CUDA 11.0

Make sure to modify/create a requirements file for your operating system and CUDA version.

Finally, install the local package in the virtual environment by running

(xxx) $ poetry install

Setting up the environment

Copy the example environment variables:

$ cp .env.example .env 

You can then fill in .env accordingly.

Downloading and using voxceleb1 and 2

I've experienced that the download links for voxceleb1/2 can be unstable. I recommend manually downloading the dataset from the google drive link displayed on https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html.

You should end up 4 zip files, which should be placed in $DATA_FOLDER/voxceleb_archives.

  1. vox1_dev_wav.zip
  2. vox1_test_wav.zip
  3. vox2_dev_aac.zip
  4. vox2_test_aac.zip

You should also download the meta files of voxceleb. You can use preparation_scripts/download_pretrained_models.sh to download them to the expected location $DATA_FOLDER/voxceleb_meta.

Converting voxceleb2 data from .m4a to .wav

This requires ffmpeg to be installed on the machine. Check with ffmpeg -version. Assuming the voxceleb2 data is placed at $DATA_FOLDER/voxceleb_archives/vox2_dev_aac.zip and $DATA_FOLDER/voxceleb_archives/vox2_test_aac.zip, run the following commands, starting from the root project directory.

source .env

PDIR=$PWD # folder where this README is located
D=$DATA_FOLDER # location of data - should be set in .env file 
WORKERS=$(nproc --all) # number of CPUs available 

# extract voxceleb 2 data
cd $D
mkdir -p convert_tmp/train convert_tmp/test

unzip voxceleb_archives/vox2_dev_aac.zip -d convert_tmp/train
unzip voxceleb_archives/vox2_test_aac.zip -d convert_tmp/test

# run the conversion script
cd $PDIR
poetry run python preparation_scripts/voxceleb2_convert_to_wav.py $D/convert_tmp --num_workers $WORKERS

# rezip the converted data
cd $D/convert_tmp/train
zip $D/voxceleb_archives/vox2_dev_wav.zip wav -r

cd $D/convert_tmp/test
zip $D/voxceleb_archives/vox2_test_wav.zip wav -r

# delete the unzipped .m4a files
cd $D
rm -r convert_tmp

Note that this process can take a few hours on a fast machine and day(s) on a single (slow) cpu. Make sure to save the vox2_dev_wav.zip and vox2_test_wav.zip files somewhere secure, so you don't have redo this process :).

Downloading pre-trained models.

You can run ./preparation_scripts/download_pretrained_models.sh to download the pre-trained models of wav2vec2 to the required $DATA_DIRECTORY/pretrained_models directory.

Running the experiments

Below we show all the commands for training the specified network. They should reproduce the results in the paper. Note that we used a SLURM GPU cluster and each command therefore includes hydra/launcher=slurm. If you want to reproduce these locally these lines need to be removed.

wav2vec2-sv-ce

auto_lr_find

python run.py +experiment=speaker_wav2vec2_ce \
tune_model=True data/module=voxceleb1 \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000

5k iters, visually around 1e-4

grid search

grid = 1e-5, 5e-5, 9e-5, 1e-4, 2e-4, 5e-4, 1e-3

python run.py -m +experiment=speaker_wav2vec2_ce \
data.dataloader.train_batch_size=66 \
optim.algo.lr=1e-5,5e-5,9e-5,1e-4,2e-4,5e-4,1e-3 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=7

best performance n=3

python run.py -m +experiment=speaker_wav2vec2_ce \
data.dataloader.train_batch_size=66 optim.algo.lr=9e-5 \
seed=26160,79927,90537 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=3

best pooling n=3

python run.py -m +experiment=speaker_wav2vec2_ce \
data.dataloader.train_batch_size=66 optim.algo.lr=9e-5 \
seed=168621,597558,440108 \
network.stat_pooling_type=mean,mean+std,attentive,quantile,first,first+cls,last,middle,random,max \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=4

wav2vec2-sv-aam

aam with m=0.2 and s=30

auto_lr_find

python run.py +experiment=speaker_wav2vec2_ce \
tune_model=True data/module=voxceleb1 \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000 \
optim/loss=aam_softmax

grid search

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 \
optim.algo.lr=1e-5,5e-5,9e-5,1e-4,2e-4,5e-4,1e-3 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=7

same grid

best performance n=3

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=29587,14352,70814 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=3

best pooling n=3

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=392401,39265,62634  \
network.stat_pooling_type=mean,mean+std,attentive,quantile,first,first+cls,last,middle,random,max \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=4

wav2vec2-sv-bce

auto_lr_find

python run.py +experiment=speaker_wav2vec2_pairs \
tune_model=True data/module=voxceleb1_pairs \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000

grid search

5e-6,7e6,9e-6,1e-5,2e-5,3e-5,4e-5,1e-4

python run.py -m +experiment=speaker_wav2vec2_pairs \
optim.algo.lr=5e-6,7e-6,9e-6,1e-5,2e-5,3e-5,4e-5,1e-4 \
data.dataloader.train_batch_size=32 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=8

best performance n=4

python run.py -m +experiment=speaker_wav2vec2_pairs \
optim.algo.lr=0.00003 data.dataloader.train_batch_size=32 \
seed=154233,979426,971817,931201 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=4 

xvector

auto_lr_find

python run.py +experiment=speaker_xvector \
tune_model=True data/module=voxceleb1 \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000

grid search

1e-5,6e-5,1e-4,2e-4,3e-4,4e-4,8e-4,1e-3

python run.py -m +experiment=speaker_xvector \
optim.algo.lr=1e-5,6e-5,1e-4,2e-4,3e-4,4e-4,8e-4,1e-3 \
data.dataloader.train_batch_size=66 \
hydra/launcher=slurm hydra.launcher.exclude=cn105 hydra.launcher.array_parallelism=8

best performance n=3

python run.py -m +experiment=speaker_xvector \
optim.algo.lr=0.0004 trainer.max_steps=100_000 \
data.dataloader.train_batch_size=66 \
seed=82713,479728,979292 \
hydra/launcher=slurm hydra.launcher.exclude=cn105 hydra.launcher.array_parallelism=6 \

ecapa-tdnn

auto_lr_find

python run.py +experiment=speaker_ecapa_tdnn \
tune_model=True data/module=voxceleb1 \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000

grid search

5e-6,1e-5,5e-4,1e-4,5e-3,7e-4,9e-4,1e-3

python run.py -m +experiment=speaker_ecapa_tdnn \
optim.algo.lr=5e-6,1e-5,5e-4,1e-4,5e-3,7e-4,9e-4,1e-3 \
data.dataloader.train_batch_size=66 \
hydra/launcher=slurm hydra.launcher.exclude=cn105 hydra.launcher.array_parallelism=8

best performance n=3

python run.py -m +experiment=speaker_ecapa_tdnn \
optim.algo.lr=0.001 trainer.max_steps=100_000 \
data.dataloader.train_batch_size=66 \
seed=494671,196126,492116 \
hydra/launcher=slurm hydra.launcher.exclude=cn105 hydra.launcher.array_parallelism=6

Ablation

baseline

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=392401,39265,62634 network.stat_pooling_type=first+cls \
hydra/launcher=slurm hydra.launcher.array_parallelism=3

unfrozen feature extractor

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=914305,386390,865459 network.stat_pooling_type=first+cls \
network.completely_freeze_feature_extractor=False tag=no_freeze \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 hydra.launcher.exclude=cn104

no pre-trained weights

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=517646,414321,137524 network.stat_pooling_type=first+cls \
network.completely_freeze_feature_extractor=False network.reset_weights=True tag=no_pretrain \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 hydra.launcher.exclude=cn104

no layerdrop

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=15249,728106,821754 network.stat_pooling_type=first+cls \
network.layerdrop=0.0 tag=no_layer \
hydra/launcher=slurm hydra.launcher.array_parallelism=3

no dropout

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=627687,883727,154405 network.stat_pooling_type=first+cls \
network.layerdrop=0.0 network.attention_dropout=0 \ 
network.feat_proj_dropout=0 network.hidden_dropout=0 tag=no_drop \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 

no time masking

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=602400,553540,419322 network.stat_pooling_type=first+cls \
network.layerdrop=0.0 network.attention_dropout=0 network.feat_proj_dropout=0 \
network.hidden_dropout=0 network.mask_time_prob=0 tag=no_mask \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 

batch size 32

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=32 trainer.max_steps=200_000 \
optim.algo.lr=0.00005 network.stat_pooling_type=first+cls \
tag=bs_32 seed=308966,753370,519822 \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 

batch size 128

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=128 trainer.max_steps=50_000 \
optim.algo.lr=0.00005 seed=54375,585956,637400 \
network.stat_pooling_type=first+cls tag=bs_128 \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 hydra.launcher.exclude=cn104

constant lr=3e-6

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=3e-6 \
seed=549686,190215,637679 network.stat_pooling_type=first+cls \
optim/schedule=constant tag=lr_low \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 

constant lr=5e-5

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=419703,980724,124995 network.stat_pooling_type=first+cls \
optim/schedule=constant tag=lr_same \
hydra/launcher=slurm hydra.launcher.array_parallelism=3  

tri_stage

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=856797,952324,89841 network.stat_pooling_type=first+cls \
optim/schedule=tri_stage tag=lr_3stage \
optim.schedule.scheduler.lr_lambda.initial_lr=1e-7 optim.schedule.scheduler.lr_lambda.final_lr=1e-7 \
hydra/launcher=slurm hydra.launcher.array_parallelism=3

exp decay

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 seed=962764,682423,707761 \
network.stat_pooling_type=first+cls optim/schedule=exp_decay tag=lr_exp_decay \
optim.schedule.scheduler.lr_lambda.final_lr=1e-7 \
hydra/launcher=slurm hydra.launcher.array_parallelism=3  
Owner
Nik
PhD student at Radboud University Nijmegen
Nik
Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

0 Feb 21, 2022
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P

Alexandra Chronopoulou 89 Aug 12, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
This is a Prototype of an Ai ChatBot "Tea and Coffee Supplier" using python.

Ai-ChatBot-Python A chatbot is an intelligent system which can hold a conversation with a human using natural language in real time. Due to the rise o

1 Oct 30, 2021
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 17, 2021
Materials (slides, code, assignments) for the NYU class I teach on NLP and ML Systems (Master of Engineering).

FREE_7773 Repo containing material for the NYU class (Master of Engineering) I teach on NLP, ML Sys etc. For context on what the class is trying to ac

Jacopo Tagliabue 90 Dec 19, 2022
Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

PythonTextObfuscator Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Requi

2 Aug 29, 2022
A Telegram bot to add notes to Flomo.

flomo bot 使用 Telegram 机器人发送笔记到你的 Flomo. 你需要有一台可访问 Telegram 的服务器。 Steps @BotFather 新建机器人,获取 token Flomo 官网获取 API,链接 https://flomoapp.com/mine?source=in

Zhen 44 Dec 30, 2022
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022