Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Overview

Fine-tuning wav2vec2 for speaker recognition

This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each training run can be found here:

Installing dependencies

If poetry is not installed, see https://python-poetry.org/docs/. We also expect at least python 3.8 on the system. If this is not the case, look into https://github.com/pyenv/pyenv for an easy tool to install a specific python version on your system.

The python dependencies can be installed (in a project-specific virtual environment) by:

$ poetry shell  # enter project-specific virtual environment

From now on, every command which should be run under the virtual environment (which looks like (wav2vec-speaker-identification- -py ) $ ) which is shortened to (xxx) $ .

Then install all required python packages:

(xxx) $ pip install -U pip
(xxx) $ poetry update # install dependencies 

Because PyTorch is currently serving the packages on PiPY incorrectly, we need to use pip to install the specific PyTorch versions we need.

(xxx) $ pip install -r requirements/requirements_cuda101.txt # if CUDA 10.1
(xxx) $ pip install -r requirements/requirements_cuda110.txt # if CUDA 11.0

Make sure to modify/create a requirements file for your operating system and CUDA version.

Finally, install the local package in the virtual environment by running

(xxx) $ poetry install

Setting up the environment

Copy the example environment variables:

$ cp .env.example .env 

You can then fill in .env accordingly.

Downloading and using voxceleb1 and 2

I've experienced that the download links for voxceleb1/2 can be unstable. I recommend manually downloading the dataset from the google drive link displayed on https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html.

You should end up 4 zip files, which should be placed in $DATA_FOLDER/voxceleb_archives.

  1. vox1_dev_wav.zip
  2. vox1_test_wav.zip
  3. vox2_dev_aac.zip
  4. vox2_test_aac.zip

You should also download the meta files of voxceleb. You can use preparation_scripts/download_pretrained_models.sh to download them to the expected location $DATA_FOLDER/voxceleb_meta.

Converting voxceleb2 data from .m4a to .wav

This requires ffmpeg to be installed on the machine. Check with ffmpeg -version. Assuming the voxceleb2 data is placed at $DATA_FOLDER/voxceleb_archives/vox2_dev_aac.zip and $DATA_FOLDER/voxceleb_archives/vox2_test_aac.zip, run the following commands, starting from the root project directory.

source .env

PDIR=$PWD # folder where this README is located
D=$DATA_FOLDER # location of data - should be set in .env file 
WORKERS=$(nproc --all) # number of CPUs available 

# extract voxceleb 2 data
cd $D
mkdir -p convert_tmp/train convert_tmp/test

unzip voxceleb_archives/vox2_dev_aac.zip -d convert_tmp/train
unzip voxceleb_archives/vox2_test_aac.zip -d convert_tmp/test

# run the conversion script
cd $PDIR
poetry run python preparation_scripts/voxceleb2_convert_to_wav.py $D/convert_tmp --num_workers $WORKERS

# rezip the converted data
cd $D/convert_tmp/train
zip $D/voxceleb_archives/vox2_dev_wav.zip wav -r

cd $D/convert_tmp/test
zip $D/voxceleb_archives/vox2_test_wav.zip wav -r

# delete the unzipped .m4a files
cd $D
rm -r convert_tmp

Note that this process can take a few hours on a fast machine and day(s) on a single (slow) cpu. Make sure to save the vox2_dev_wav.zip and vox2_test_wav.zip files somewhere secure, so you don't have redo this process :).

Downloading pre-trained models.

You can run ./preparation_scripts/download_pretrained_models.sh to download the pre-trained models of wav2vec2 to the required $DATA_DIRECTORY/pretrained_models directory.

Running the experiments

Below we show all the commands for training the specified network. They should reproduce the results in the paper. Note that we used a SLURM GPU cluster and each command therefore includes hydra/launcher=slurm. If you want to reproduce these locally these lines need to be removed.

wav2vec2-sv-ce

auto_lr_find

python run.py +experiment=speaker_wav2vec2_ce \
tune_model=True data/module=voxceleb1 \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000

5k iters, visually around 1e-4

grid search

grid = 1e-5, 5e-5, 9e-5, 1e-4, 2e-4, 5e-4, 1e-3

python run.py -m +experiment=speaker_wav2vec2_ce \
data.dataloader.train_batch_size=66 \
optim.algo.lr=1e-5,5e-5,9e-5,1e-4,2e-4,5e-4,1e-3 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=7

best performance n=3

python run.py -m +experiment=speaker_wav2vec2_ce \
data.dataloader.train_batch_size=66 optim.algo.lr=9e-5 \
seed=26160,79927,90537 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=3

best pooling n=3

python run.py -m +experiment=speaker_wav2vec2_ce \
data.dataloader.train_batch_size=66 optim.algo.lr=9e-5 \
seed=168621,597558,440108 \
network.stat_pooling_type=mean,mean+std,attentive,quantile,first,first+cls,last,middle,random,max \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=4

wav2vec2-sv-aam

aam with m=0.2 and s=30

auto_lr_find

python run.py +experiment=speaker_wav2vec2_ce \
tune_model=True data/module=voxceleb1 \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000 \
optim/loss=aam_softmax

grid search

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 \
optim.algo.lr=1e-5,5e-5,9e-5,1e-4,2e-4,5e-4,1e-3 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=7

same grid

best performance n=3

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=29587,14352,70814 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=3

best pooling n=3

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=392401,39265,62634  \
network.stat_pooling_type=mean,mean+std,attentive,quantile,first,first+cls,last,middle,random,max \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=4

wav2vec2-sv-bce

auto_lr_find

python run.py +experiment=speaker_wav2vec2_pairs \
tune_model=True data/module=voxceleb1_pairs \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000

grid search

5e-6,7e6,9e-6,1e-5,2e-5,3e-5,4e-5,1e-4

python run.py -m +experiment=speaker_wav2vec2_pairs \
optim.algo.lr=5e-6,7e-6,9e-6,1e-5,2e-5,3e-5,4e-5,1e-4 \
data.dataloader.train_batch_size=32 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=8

best performance n=4

python run.py -m +experiment=speaker_wav2vec2_pairs \
optim.algo.lr=0.00003 data.dataloader.train_batch_size=32 \
seed=154233,979426,971817,931201 \
hydra/launcher=slurm hydra.launcher.exclude=cn104 hydra.launcher.array_parallelism=4 

xvector

auto_lr_find

python run.py +experiment=speaker_xvector \
tune_model=True data/module=voxceleb1 \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000

grid search

1e-5,6e-5,1e-4,2e-4,3e-4,4e-4,8e-4,1e-3

python run.py -m +experiment=speaker_xvector \
optim.algo.lr=1e-5,6e-5,1e-4,2e-4,3e-4,4e-4,8e-4,1e-3 \
data.dataloader.train_batch_size=66 \
hydra/launcher=slurm hydra.launcher.exclude=cn105 hydra.launcher.array_parallelism=8

best performance n=3

python run.py -m +experiment=speaker_xvector \
optim.algo.lr=0.0004 trainer.max_steps=100_000 \
data.dataloader.train_batch_size=66 \
seed=82713,479728,979292 \
hydra/launcher=slurm hydra.launcher.exclude=cn105 hydra.launcher.array_parallelism=6 \

ecapa-tdnn

auto_lr_find

python run.py +experiment=speaker_ecapa_tdnn \
tune_model=True data/module=voxceleb1 \
trainer.auto_lr_find=auto_lr_find tune_iterations=5000

grid search

5e-6,1e-5,5e-4,1e-4,5e-3,7e-4,9e-4,1e-3

python run.py -m +experiment=speaker_ecapa_tdnn \
optim.algo.lr=5e-6,1e-5,5e-4,1e-4,5e-3,7e-4,9e-4,1e-3 \
data.dataloader.train_batch_size=66 \
hydra/launcher=slurm hydra.launcher.exclude=cn105 hydra.launcher.array_parallelism=8

best performance n=3

python run.py -m +experiment=speaker_ecapa_tdnn \
optim.algo.lr=0.001 trainer.max_steps=100_000 \
data.dataloader.train_batch_size=66 \
seed=494671,196126,492116 \
hydra/launcher=slurm hydra.launcher.exclude=cn105 hydra.launcher.array_parallelism=6

Ablation

baseline

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=392401,39265,62634 network.stat_pooling_type=first+cls \
hydra/launcher=slurm hydra.launcher.array_parallelism=3

unfrozen feature extractor

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=914305,386390,865459 network.stat_pooling_type=first+cls \
network.completely_freeze_feature_extractor=False tag=no_freeze \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 hydra.launcher.exclude=cn104

no pre-trained weights

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=517646,414321,137524 network.stat_pooling_type=first+cls \
network.completely_freeze_feature_extractor=False network.reset_weights=True tag=no_pretrain \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 hydra.launcher.exclude=cn104

no layerdrop

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=15249,728106,821754 network.stat_pooling_type=first+cls \
network.layerdrop=0.0 tag=no_layer \
hydra/launcher=slurm hydra.launcher.array_parallelism=3

no dropout

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=627687,883727,154405 network.stat_pooling_type=first+cls \
network.layerdrop=0.0 network.attention_dropout=0 \ 
network.feat_proj_dropout=0 network.hidden_dropout=0 tag=no_drop \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 

no time masking

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=602400,553540,419322 network.stat_pooling_type=first+cls \
network.layerdrop=0.0 network.attention_dropout=0 network.feat_proj_dropout=0 \
network.hidden_dropout=0 network.mask_time_prob=0 tag=no_mask \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 

batch size 32

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=32 trainer.max_steps=200_000 \
optim.algo.lr=0.00005 network.stat_pooling_type=first+cls \
tag=bs_32 seed=308966,753370,519822 \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 

batch size 128

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=128 trainer.max_steps=50_000 \
optim.algo.lr=0.00005 seed=54375,585956,637400 \
network.stat_pooling_type=first+cls tag=bs_128 \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 hydra.launcher.exclude=cn104

constant lr=3e-6

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=3e-6 \
seed=549686,190215,637679 network.stat_pooling_type=first+cls \
optim/schedule=constant tag=lr_low \
hydra/launcher=slurm hydra.launcher.array_parallelism=3 

constant lr=5e-5

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=419703,980724,124995 network.stat_pooling_type=first+cls \
optim/schedule=constant tag=lr_same \
hydra/launcher=slurm hydra.launcher.array_parallelism=3  

tri_stage

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 \
seed=856797,952324,89841 network.stat_pooling_type=first+cls \
optim/schedule=tri_stage tag=lr_3stage \
optim.schedule.scheduler.lr_lambda.initial_lr=1e-7 optim.schedule.scheduler.lr_lambda.final_lr=1e-7 \
hydra/launcher=slurm hydra.launcher.array_parallelism=3

exp decay

python run.py -m +experiment=speaker_wav2vec2_aam \
data.dataloader.train_batch_size=66 optim.algo.lr=0.00005 seed=962764,682423,707761 \
network.stat_pooling_type=first+cls optim/schedule=exp_decay tag=lr_exp_decay \
optim.schedule.scheduler.lr_lambda.final_lr=1e-7 \
hydra/launcher=slurm hydra.launcher.array_parallelism=3  
Owner
Nik
PhD student at Radboud University Nijmegen
Nik
SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。

SimpleChinese2 SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。 声明 本项目是为方便个人工作所创建的,仅有部分代码原创。

Ming 30 Dec 02, 2022
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.

GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t

EleutherAI 6.7k Dec 28, 2022
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
189 Jan 02, 2023
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Korean stereoypte detector with TUNiB-Electra and K-StereoSet

Korean Stereotype Detector Korean stereotype sentence classifier using K-StereoSet with TUNiB-Electra Web demo you can test this model easily in demo

Sae_Chan_Oh 11 Feb 18, 2022
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

1 Nov 02, 2021
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
基于pytorch_rnn的古诗词生成

pytorch_peot_rnn 基于pytorch_rnn的古诗词生成 说明 config.py里面含有训练、测试、预测的参数,更改后运行: python main.py 预测结果 if config.do_predict: result = trainer.generate('丽日照残春')

西西嘛呦 3 May 26, 2022
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Cambridge Language Technology Lab 61 Dec 10, 2022
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022