Code accompanying our NeurIPS 2021 traffic4cast challenge

Overview

Traffic forecasting on traffic movie snippets

This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the challenge, traffic data is provided in movie format, i.e. a rasterised map with volume and average speed values evolving over time. The code is based on (and forked from) the code provided by the competition organizers, which can be found here. For further information on the data and the challenge we also refer to the competition Website or GitHub.

Installation and setup

To install the repository and all required packages, run

git clone https://github.com/NinaWie/NeurIPS2021-traffic4cast.git
cd NeurIPS2021-traffic4cast

conda env update -f environment.yaml
conda activate t4c

export PYTHONPATH="$PYTHONPATH:$PWD"

Instructions on installation with GPU support can be found in the yaml file.

To reproduce the results and train or test on the original data, download the data and extract it to the subfolder data/raw.

Test model

Download the weights of our best model here and put it in a new folder named trained_model in the main directory. The path to the checkpoint should now be NeurIPS2021-traffic4cast/trained_models/ckpt_upp_patch_d100.pt.

To create a submission on the test data, run

DEVICE=cpu
DATA_RAW_PATH="data/raw"
STRIDE=10

python baselines/baselines_cli.py --model_str=up_patch --resume_checkpoint='trained_models/ckpt_upp_patch_d100.pt' --radius=50 --stride=$STRIDE --epochs=0 --batch_size=1 --num_workers=0 --data_raw_path=$DATA_RAW_PATH --device=$DEVICE --submit

Notes:

  • For our best submission (score 59.93) a stride of 10 is used. This means that patches are extracted from the test data in a very densely overlapping manner. However, much more patches per sample have to be predicted and the runtime thus increases significantly. We thus recommend to use a stride of 50 for testing (score 60.13 on leaderboard).
  • In our paper, we define d as the side length of each patch. In this codebase we set a radius instead. The best performing model was trained with radius 50 corresponding to d=100.
  • The --submit-flag was added to the arguments to be called whenever a submission should be created.

Train

To train a model from scratch with our approach, run

DEVICE=cpu
DATA_RAW_PATH="data/raw"

python baselines/baselines_cli.py --model_str=up_patch --radius=50 --epochs=1000 --limit=100 --val_limit=10 --batch_size=8 --checkpoint_name='_upp_50_retrained' --num_workers=0 --data_raw_path=$DATA_RAW_PATH --device=$DEVICE

Notes:

  • The model will be saved in a folder called ckpt_upp_50_retrained, as specified with the checkpoint_name argument. The checkpoints will be saved every 50 epochs and whenever a better validation score is achieved (best.pt). Later, training can be resumed (or the model can be tested) by setting --resume_checkpoint='ckpt_upp_50_retrained/best.pt'.
  • No submission will be created after the run. Add the flag --submit in order to create a submission
  • The stride argument is not necessary for training, since it is only relevant for test data. The validation MSE is computed on the patches, not a full city.
  • In order to use our dataset, the number of workers must be set to 0. Otherwise, the random seed will be set such that the same files are loaded for every epoch. This is due to the setup of the PatchT4CDataset, where files are randomly loaded every epoch and then kept in memory.

Reproduce experiments

In our short paper, further experiments comparing model architectures and different strides are shown. To reproduce the experiment on stride values, execute the following steps:

  • Run python baselines/naive_shifted_stats.py to create artifical test data from the city Antwerp
  • Adapt the paths in the script
  • Run python test_script.py
  • Analyse the output csv file results_test_script.csv

For the other experiments, we regularly write training and validation losses to a file results.json during training (file is stored in the same folder as the checkpoints).

Other approaches

  • In naive_shifted_stats we have implemented a naive approach to the temporal challenge, namely using averages of the previous year and adapting the values to 2020 with a simple factor dependent on the shift of the input hour. The statistics however first have to be computed for each city.
  • In the configs file further options were added, for example u_patch which is the normal U-Net with patching, and models from the segmentation_models_pytorch (smp) PyPI package. For the latter, smp must be installed with pip install segmentation_models_pytorch.
Owner
Nina Wiedemann
Nina Wiedemann
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022