NVIDIA Deep Learning Examples for Tensor Cores

Overview

NVIDIA Deep Learning Examples for Tensor Cores

Introduction

This repository provides State-of-the-Art Deep Learning examples that are easy to train and deploy, achieving the best reproducible accuracy and performance with NVIDIA CUDA-X software stack running on NVIDIA Volta, Turing and Ampere GPUs.

NVIDIA GPU Cloud (NGC) Container Registry

These examples, along with our NVIDIA deep learning software stack, are provided in a monthly updated Docker container on the NGC container registry (https://ngc.nvidia.com). These containers include:

  • The latest NVIDIA examples from this repository
  • The latest NVIDIA contributions shared upstream to the respective framework
  • The latest NVIDIA Deep Learning software libraries, such as cuDNN, NCCL, cuBLAS, etc. which have all been through a rigorous monthly quality assurance process to ensure that they provide the best possible performance
  • Monthly release notes for each of the NVIDIA optimized containers

Computer Vision

Models Framework A100 AMP Multi-GPU Multi-Node TRT ONNX Triton DLC NB
ResNet-50 PyTorch Yes Yes Yes - Yes - Yes Yes -
ResNeXt-101 PyTorch Yes Yes Yes - Yes - Yes Yes -
SE-ResNeXt-101 PyTorch Yes Yes Yes - Yes - Yes Yes -
EfficientNet-B0 PyTorch Yes Yes Yes - - - - Yes -
EfficientNet-B4 PyTorch Yes Yes Yes - - - - Yes -
EfficientNet-WideSE-B0 PyTorch Yes Yes Yes - - - - Yes -
EfficientNet-WideSE-B4 PyTorch Yes Yes Yes - - - - Yes -
Mask R-CNN PyTorch Yes Yes Yes - - - - - Yes
nnUNet PyTorch Yes Yes Yes - - - - Yes -
SSD PyTorch Yes Yes Yes - - - - - Yes
ResNet-50 TensorFlow Yes Yes Yes - - - - Yes -
ResNeXt101 TensorFlow Yes Yes Yes - - - - Yes -
SE-ResNeXt-101 TensorFlow Yes Yes Yes - - - - Yes -
Mask R-CNN TensorFlow Yes Yes Yes - - - - Yes -
SSD TensorFlow Yes Yes Yes - - - - Yes Yes
U-Net Ind TensorFlow Yes Yes Yes - - - - Yes Yes
U-Net Med TensorFlow Yes Yes Yes - - - - Yes -
U-Net 3D TensorFlow Yes Yes Yes - - - - Yes -
V-Net Med TensorFlow Yes Yes Yes - - - - Yes -
U-Net Med TensorFlow2 Yes Yes Yes - - - - Yes -
Mask R-CNN TensorFlow2 Yes Yes Yes - - - - Yes -
EfficientNet TensorFlow2 Yes Yes Yes Yes - - - Yes -
ResNet-50 MXNet - Yes Yes - - - - - -

Natural Language Processing

Models Framework A100 AMP Multi-GPU Multi-Node TRT ONNX Triton DLC NB
BERT PyTorch Yes Yes Yes Yes - - Yes Yes -
TransformerXL PyTorch Yes Yes Yes Yes - - - Yes -
GNMT PyTorch Yes Yes Yes - - - - - -
Transformer PyTorch Yes Yes Yes - - - - - -
ELECTRA TensorFlow2 Yes Yes Yes Yes - - - Yes -
BERT TensorFlow Yes Yes Yes Yes Yes - Yes Yes Yes
BERT TensorFlow2 Yes Yes Yes Yes - - - Yes -
BioBert TensorFlow Yes Yes Yes - - - - Yes Yes
TransformerXL TensorFlow Yes Yes Yes - - - - - -
GNMT TensorFlow Yes Yes Yes - - - - - -
Faster Transformer Tensorflow - - - - Yes - - - -

Recommender Systems

Models Framework A100 AMP Multi-GPU Multi-Node TRT ONNX Triton DLC NB
DLRM PyTorch Yes Yes Yes - - Yes Yes Yes Yes
DLRM TensorFlow2 Yes Yes Yes Yes - - - Yes -
NCF PyTorch Yes Yes Yes - - - - - -
Wide&Deep TensorFlow Yes Yes Yes - - - - Yes -
Wide&Deep TensorFlow2 Yes Yes Yes - - - - Yes -
NCF TensorFlow Yes Yes Yes - - - - Yes -
VAE-CF TensorFlow Yes Yes Yes - - - - - -

Speech to Text

Models Framework A100 AMP Multi-GPU Multi-Node TRT ONNX Triton DLC NB
Jasper PyTorch Yes Yes Yes - Yes Yes Yes Yes Yes
Hidden Markov Model Kaldi - - Yes - - - Yes - -

Text to Speech

Models Framework A100 AMP Multi-GPU Multi-Node TRT ONNX Triton DLC NB
FastPitch PyTorch Yes Yes Yes - - - - Yes -
FastSpeech PyTorch - Yes Yes - Yes - - - -
Tacotron 2 and WaveGlow PyTorch Yes Yes Yes - Yes Yes Yes Yes -

Graph Neural Networks

Models Framework A100 AMP Multi-GPU Multi-Node TRT ONNX Triton DLC NB
SE(3)-Transformer PyTorch Yes Yes Yes - - - - - -

NVIDIA support

In each of the network READMEs, we indicate the level of support that will be provided. The range is from ongoing updates and improvements to a point-in-time release for thought leadership.

Glossary

Multinode Training
Supported on a pyxis/enroot Slurm cluster.

Deep Learning Compiler (DLC)
TensorFlow XLA and PyTorch JIT and/or TorchScript

Accelerated Linear Algebra (XLA)
XLA is a domain-specific compiler for linear algebra that can accelerate TensorFlow models with potentially no source code changes. The results are improvements in speed and memory usage.

PyTorch JIT and/or TorchScript
TorchScript is a way to create serializable and optimizable models from PyTorch code. TorchScript, an intermediate representation of a PyTorch model (subclass of nn.Module) that can then be run in a high-performance environment such as C++.

Automatic Mixed Precision (AMP)
Automatic Mixed Precision (AMP) enables mixed precision training on Volta, Turing, and NVIDIA Ampere GPU architectures automatically.

TensorFloat-32 (TF32)
TensorFloat-32 (TF32) is the new math mode in NVIDIA A100 GPUs for handling the matrix math also called tensor operations. TF32 running on Tensor Cores in A100 GPUs can provide up to 10x speedups compared to single-precision floating-point math (FP32) on Volta GPUs. TF32 is supported in the NVIDIA Ampere GPU architecture and is enabled by default.

Jupyter Notebooks (NB)
The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.

Feedback / Contributions

We're posting these examples on GitHub to better support the community, facilitate feedback, as well as collect and implement contributions using GitHub Issues and pull requests. We welcome all contributions!

Known issues

In each of the network READMEs, we indicate any known issues and encourage the community to provide feedback.

Owner
NVIDIA Corporation
NVIDIA Corporation
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Özlem Taşkın 0 Feb 23, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Alex Pashevich 62 Dec 24, 2022
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022