A framework for building (and incrementally growing) graph-based data structures used in hierarchical or DAG-structured clustering and nearest neighbor search

Overview

Install

Linux wheels available (python >=3.6) on pypi:

pip install graphgrove

Building from source:

conda create -n gg python=3.8
conda activate gg
pip install numpy
make

To build your own wheel:

conda create -n gg python=3.8
conda activate gg
pip install numpy
make
pip install build
python -m build --wheel
# which can be used as:
# pip install --force dist/graphgrove-0.0.1-cp37-cp37m-linux_x86_64.whl 

Examples

Toy examples of clustering, DAG-structured clustering, and nearest neighbor search are available.

At a high level, incremental clustering can be done as:

import graphgrove as gg
k = 5
num_rounds = 50
thresholds = np.geomspace(1.0, 0.001, num_rounds).astype(np.float32)
scc = gg.vec_scc.Cosine_SCC(k=k, num_rounds=num_rounds, thresholds=thresholds, index_name='cosine_sgtree', cores=cores, verbosity=0)
# data_batches - generator of numpy matrices mini-batch-size by dim
for batch in data_batches:
    scc.partial_fit(batch)

Incremental nearest neighbor search can be done as:

import graphgrove as gg
k=5
cores=4
tree = gg.graph_builder.Cosine_SGTree(k=k, cores=cores)
# data_batches - generator of numpy matrices mini-batch-size by dim
for batch in data_batches:
    tree.insert(batch) # or tree.insert_and_knn(batch) 

Algorithms Implemented

Clustering:

  • Sub-Cluster Component Algorithm (SCC) and its minibatch variant from the paper: Scalable Hierarchical Agglomerative Clustering. Nicholas, Monath, Kumar Avinava Dubey, Guru Guruganesh, Manzil Zaheer, Amr Ahmed, Andrew McCallum, Gokhan Mergen, Marc Najork Mert Terzihan Bryon Tjanaka Yuan Wang Yuchen Wu. KDD. 2021
  • DAG Structured clustering (LLama) from DAG-Structured Clustering by Nearest Neighbors. Nicholas Monath, Manzil Zaheer, Kumar Avinava Dubey, Amr Ahmed, Andrew McCallum. AISTATS 2021.

Nearest Neighbor Search:

  • CoverTree: Alina Beygelzimer, Sham Kakade, and John Langford. "Cover trees for nearest neighbor." ICML. 2006.
  • SGTree: SG-Tree is a new data structure for exact nearest neighbor search inspired from Cover Tree and its improvement, which has been used in the TerraPattern project. At a high level, SG-Tree tries to create a hierarchical tree where each node performs a "coarse" clustering. The centers of these "clusters" become the children and subsequent insertions are recursively performed on these children. When performing the NN query, we prune out solutions based on a subset of the dimensions that are being queried. This is particularly useful when trying to find the nearest neighbor in highly clustered subset of the data, e.g. when the data comes from a recursive mixture of Gaussians or more generally time marginalized coalscent process . The effect of these two optimizations is that our data structure is extremely simple, highly parallelizable and is comparable in performance to existing NN implementations on many data-sets. Manzil Zaheer, Guru Guruganesh, Golan Levin, Alexander Smola. TerraPattern: A Nearest Neighbor Search Service. 2019.
healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

health-lesion-stovol healthy and lesion models for learning based on the joint estimation of stochasticity and volatility Reference please cite this p

5 Nov 01, 2022
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
Machine Learning Algorithms ( Desion Tree, XG Boost, Random Forest )

implementation of machine learning Algorithms such as decision tree and random forest and xgboost on darasets then compare results for each and implement ant colony and genetic algorithms on tsp map,

Mohamadreza Rezaei 1 Jan 19, 2022
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
Deep Survival Machines - Fully Parametric Survival Regression

Package: dsm Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The under

Carnegie Mellon University Auton Lab 10 Dec 30, 2022
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022