Meta graph convolutional neural network-assisted resilient swarm communications

Overview

Resilient UAV Swarm Communications with Graph Convolutional Neural Network

This repository contains the source codes of

Resilient UAV Swarm Communications with Graph Convolutional Neural Network

Zhiyu Mou, Feifei Gao, Jun Liu, and Qihui Wu

Fei-Lab

Problem Descriptions

In this paper, we study the self-healing of communication connectivity (SCC) problem of unmanned aerial vehicle (UAV) swarm network (USNET) that is required to quickly rebuild the communication connectivity under unpredictable external destructions (UEDs). Firstly, to cope with the one-off UEDs, we propose a graph convolutional neural network (GCN) and find the recovery topology of the USNET in an on-line manner. Secondly, to cope with general UEDs, we develop a GCN based trajectory planning algorithm that can make UAVs rebuild the communication connectivity during the self-healing process. We also design a meta learning scheme to facilitate the on-line executions of the GCN. Numerical results show that the proposed algorithms can rebuild the communication connectivity of the USNET more quickly than the existing algorithms under both one-off UEDs and general UEDs. The simulation results also show that the meta learning scheme can not only enhance the performance of the GCN but also reduce the time complexity of the on-line executions.

Display of Main Results Demo

One-off UEDs

randomly destruct 150 UAVs                             randomly destruct 100 UAVs

150 100

General UEDs

general UEDs with global information           general UEDs with monitoring mechanism

general_global_info general

Note: these are gifs. It may take a few seconds to display. You can refresh the page if they cannot display normally. Or you can view them in ./video.

Environment Requirements

pytorch==1.6.0
torchvision==0.7.0
numpy==1.18.5
matplotlib==3.2.2
pandas==1.0.5
seaborn==0.10.1
cuda supports and GPU acceleration

Note: other versions of the required packages may also work.

The machine we use

CPU: Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz
GPU: NVIDIA GeForce RTX 3090

Necessary Supplementary Downloads

As some of the necessary configuration files, including .xlsx and .npy files can not be uploaded to the github, we upload these files to the clouds. Anyone trying to run these codes need to download the necessary files.

Download initial UAV positions (necessary)

To make the codes reproducible, you need to download the initial positions of UAVs we used in the experiment from https://cloud.tsinghua.edu.cn/f/c18807be55634378b30f/ or https://drive.google.com/file/d/1q1J-F2OAY_VDaNd1DWCfy_N2loN7o1XV/view?usp=sharing. Upzip the download files to ./Configurations/.

Download Trained Meta Parameters (alternative, but if using meta learning without training again, then necessary)

Since the total size of meta parameters is about 1.2GB, we have uploaded the meta parameters to https://cloud.tsinghua.edu.cn/f/2cb28934bd9f4bf1bdd7/ and https://drive.google.com/file/d/1QPipenDZi_JctNH3oyHwUXsO7QwNnLOz/view?usp=sharing. You need to download the file from either two links and unzip them to ./Meta_Learning_Results/meta_parameters/if you want to use the trained meta parameters. Otherwise, you need to train the meta parameters again (directly run Meta-learning_all.py)

Download Meta Learning Loss Functions Pictures (alternative)

The loss function pictures of meta learning are available on https://cloud.tsinghua.edu.cn/f/fc0d84f2c6374e29bcbe/ and https://drive.google.com/file/d/1cdceleZWyXcD1GxOPCYlLsRVTwNRWPBy/view?usp=sharing. You can store them in ./Meta_Learning_Results/meta_loss_pic/

Quick Start

Simulate SCC under one-off UEDs

directly run ./Experiment_One_off_UED.py

python Experiment_One_off_UED.py

Simulate meta learning process

directly run ./Meta-learning_all.py

python Meta-learning_all.py

Simulate SCC under general UEDs

directly run ./Experiment_General_UED.py

python Experiment_General_UED.py

File and Directory Explanations

  • ./Configurations/

the initial positions of 200 UAVs

  • ./Drawing/

the drawing functions

  • ./Experiment_Fig/

the experiment figures and the drawing source codes

  • ./Main_algorithm_GCN/

the proposed algorithms in the paper

  • ./Main_algorithm_GCN/CR_MGC.py

the CR-MGC algorithm (Algorithm 2 in the paper)

  • ./Main_algorithm_GCN/GCO.py

the GCO algorithm

  • ./Main_algorithm_GCN/Smallest_d_algorithm.py

algorithm of finding the smallest distance to make the RUAV graph a CCN (Algorithm 1 in the paper)

  • ./Meta_Learning_Results/

the results of meta learning

  • ./Meta_Learning_Results/meta_loss_pic

the loss function pictures of 199 mGCNs

  • ./Meta_Learning_Results/meta_parameters

the meta parameters (Since the total size of meta parameters is about 1.2GB, we have uploaded the meta parameters to https://cloud.tsinghua.edu.cn/f/2cb28934bd9f4bf1bdd7/ or https://drive.google.com/file/d/1QPipenDZi_JctNH3oyHwUXsO7QwNnLOz/view?usp=sharing)

  • ./Traditional_Algorithm/

the implementations of traditional algorithms

  • ./video/

the gif files of one-off UEDs

  • ./Configurations.py

the simulation parameters

  • ./Environment.py

the Environment generating UEDs

  • ./Experiment_General_UED.py/

the simulation under general UEDs

  • ./Experiment_One_off_UED.py/

the simulation under one-off UEDs

  • ./Experiment_One_off_UED_draw_Fig_12_d.py/

draw the Fig. 12(d) in the simulation under one-off UEDs

  • ./Meta-learning_all.py/

the meta learning

  • ./Swarm.py/

the integration of algorithms under one-off UEDs

  • ./Swarm_general.py/

the integration of algorithms under general UEDs

  • ./Utils.py/

the utility functions

Note that some unnecessary drawing codes used in the paper are not uploaded to this responsitory.

Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
Code for Recurrent Mask Refinement for Few-Shot Medical Image Segmentation (ICCV 2021).

Recurrent Mask Refinement for Few-Shot Medical Image Segmentation Steps Install any missing packages using pip or conda Preprocess each dataset using

XIE LAB @ UCI 39 Dec 08, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022