EMNLP 2020 - Summarizing Text on Any Aspects

Overview

Summarizing Text on Any Aspects

This repo contains preliminary code of the following paper:

Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised Approach
Bowen Tan, Lianhui Qin, Eric P. Xing, Zhiting Hu
EMNLP 2020
[ArXiv] [Slides]

Getting Started

  • Given a document and a target aspect (e.g., a topic of interest), aspect-based abstractive summarization attempts to generate a summary with respect to the aspect.
  • In this work, we study summarizing on arbitrary aspects relevant to the document.
  • Due to the lack of supervision data, we develop a new weak supervision construction method integrating rich external knowledge sources such as ConceptNet and Wikipedia.

Requirements

Our python version is 3.8, required packages can be installed by

pip install -r requrements.txt

Our code can run on a single GTX 1080Ti GPU.

Datasets & Knowledge Sources

Weakly Supervised Dataset

Our constructed weakly supervised dataset can be downloaded by

bash data_utils/download_weaksup.sh

Downloaded data will be saved into data/weaksup/.

We also provide the code to construct it. For more details, see

MA-News Dataset

MA-News Dataset is a aspect summarization dataset constructed by (Frermann et al.) . Its aspects are restricted to only 6 coarsegrained topics. We use MA-News dataset for our automatic evaluation. Scripts to make MA-News is here.

A JSON version processed by us can be download by

bash data_utils/download_manews.sh

Downloaded data will be saved into data/manews/.

Knowledge Graph - ConceptNet

ConceptNet is a huge multilingual commonsense knowledge graph. We extract an English subset that can be downloaded by

bash data_utils/download_concept_net.sh

Knowledge Base - Wikipedia

Wikipedia is an encyclopaedic knowledge base. We use its python API to access it online, so make sure your web connection is good when running our code.

Weakly Supervised Model

Train

Run this command to finetune a weakly supervised model from pretrained BART model (Lewis et al.).

python finetune.py --dataset_name weaksup --train_docs 100000 --n_epochs 1

Training logs and checkpoints will be saved into logs/weaksup/docs100000/

The training takes ~48h on a single GTX 1080Ti GPU. You may want to directly download the training log and the trained model here.

Generation

Run this command to generate on MA-News test set with the weakly supervised model.

python generate.py --log_path logs/weaksup/docs100000/

Source texts, target texts, generated texts will be saved as test.source, test.gold, and test.hypo respectively, into the log dir: logs/weaksup/docs100000/.

Evaluation

To run evaluation, make sure you have installed java and files2rouge on your device.

First, download stanford nlp by

python data_utils/download_stanford_core_nlp.py

and run

bash evaluate.sh logs/weaksup/docs100000/

to get rouge scores. Results will be saved in logs/weaksup/docs100000/rouge_scores.txt.

Finetune with MA-News Training Data

Baseline

Run this command to finetune a BART model with 1K MA-News training data examples.

python finetune.py --dataset_name manews --train_docs 1000 --wiki_sup False
python generate.py --log_path logs/manews/docs1000/ --wiki_sup False
bash evaluate.sh logs/manews/docs1000/

Results will be saved in logs/manews/docs1000/.

+ Weak Supervision

Run this command to finetune with 1K MA-News training data examples starting with our weakly supervised model.

python finetune.py --dataset_name manews --train_docs 1000 --pretrained_ckpt logs/weaksup/docs100000/best_model.ckpt
python generate.py --log_path logs/manews_plus/docs1000/
bash evaluate.sh logs/manews_plus/docs1000/

Results will be saved in logs/manews_plus/docs1000/.

Results

Results on MA-News dataset are as below (same setting as paper Table 2).

All the detailed logs, including training log, generated texts, and rouge scores, are available here.

(Note: The result numbers may be slightly different from those in the paper due to slightly different implementation details and random seeds, while the improvements over comparison methods are consistent.)

Model ROUGE-1 ROUGE-2 ROUGE-L
Weak-Sup Only 28.41 10.18 25.34
MA-News-Sup 1K 24.34 8.62 22.40
MA-News-Sup 1K + Weak-Sup 34.10 14.64 31.45
MA-News-Sup 3K 26.38 10.09 24.37
MA-News-Sup 3K + Weak-Sup 37.40 16.87 34.51
MA-News-Sup 10K 38.71 18.02 35.78
MA-News-Sup 10K + Weak-Sup 39.92 18.87 36.98

Demo

We provide a demo on a real news on Feb. 2021. (see demo_input.json).

To run the demo, download our trained model here, and run the command below

python demo.py --ckpt_path logs/weaksup/docs100000/best_model.ckpt
Owner
Bowen Tan
Bowen Tan
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022