EMNLP 2020 - Summarizing Text on Any Aspects

Overview

Summarizing Text on Any Aspects

This repo contains preliminary code of the following paper:

Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised Approach
Bowen Tan, Lianhui Qin, Eric P. Xing, Zhiting Hu
EMNLP 2020
[ArXiv] [Slides]

Getting Started

  • Given a document and a target aspect (e.g., a topic of interest), aspect-based abstractive summarization attempts to generate a summary with respect to the aspect.
  • In this work, we study summarizing on arbitrary aspects relevant to the document.
  • Due to the lack of supervision data, we develop a new weak supervision construction method integrating rich external knowledge sources such as ConceptNet and Wikipedia.

Requirements

Our python version is 3.8, required packages can be installed by

pip install -r requrements.txt

Our code can run on a single GTX 1080Ti GPU.

Datasets & Knowledge Sources

Weakly Supervised Dataset

Our constructed weakly supervised dataset can be downloaded by

bash data_utils/download_weaksup.sh

Downloaded data will be saved into data/weaksup/.

We also provide the code to construct it. For more details, see

MA-News Dataset

MA-News Dataset is a aspect summarization dataset constructed by (Frermann et al.) . Its aspects are restricted to only 6 coarsegrained topics. We use MA-News dataset for our automatic evaluation. Scripts to make MA-News is here.

A JSON version processed by us can be download by

bash data_utils/download_manews.sh

Downloaded data will be saved into data/manews/.

Knowledge Graph - ConceptNet

ConceptNet is a huge multilingual commonsense knowledge graph. We extract an English subset that can be downloaded by

bash data_utils/download_concept_net.sh

Knowledge Base - Wikipedia

Wikipedia is an encyclopaedic knowledge base. We use its python API to access it online, so make sure your web connection is good when running our code.

Weakly Supervised Model

Train

Run this command to finetune a weakly supervised model from pretrained BART model (Lewis et al.).

python finetune.py --dataset_name weaksup --train_docs 100000 --n_epochs 1

Training logs and checkpoints will be saved into logs/weaksup/docs100000/

The training takes ~48h on a single GTX 1080Ti GPU. You may want to directly download the training log and the trained model here.

Generation

Run this command to generate on MA-News test set with the weakly supervised model.

python generate.py --log_path logs/weaksup/docs100000/

Source texts, target texts, generated texts will be saved as test.source, test.gold, and test.hypo respectively, into the log dir: logs/weaksup/docs100000/.

Evaluation

To run evaluation, make sure you have installed java and files2rouge on your device.

First, download stanford nlp by

python data_utils/download_stanford_core_nlp.py

and run

bash evaluate.sh logs/weaksup/docs100000/

to get rouge scores. Results will be saved in logs/weaksup/docs100000/rouge_scores.txt.

Finetune with MA-News Training Data

Baseline

Run this command to finetune a BART model with 1K MA-News training data examples.

python finetune.py --dataset_name manews --train_docs 1000 --wiki_sup False
python generate.py --log_path logs/manews/docs1000/ --wiki_sup False
bash evaluate.sh logs/manews/docs1000/

Results will be saved in logs/manews/docs1000/.

+ Weak Supervision

Run this command to finetune with 1K MA-News training data examples starting with our weakly supervised model.

python finetune.py --dataset_name manews --train_docs 1000 --pretrained_ckpt logs/weaksup/docs100000/best_model.ckpt
python generate.py --log_path logs/manews_plus/docs1000/
bash evaluate.sh logs/manews_plus/docs1000/

Results will be saved in logs/manews_plus/docs1000/.

Results

Results on MA-News dataset are as below (same setting as paper Table 2).

All the detailed logs, including training log, generated texts, and rouge scores, are available here.

(Note: The result numbers may be slightly different from those in the paper due to slightly different implementation details and random seeds, while the improvements over comparison methods are consistent.)

Model ROUGE-1 ROUGE-2 ROUGE-L
Weak-Sup Only 28.41 10.18 25.34
MA-News-Sup 1K 24.34 8.62 22.40
MA-News-Sup 1K + Weak-Sup 34.10 14.64 31.45
MA-News-Sup 3K 26.38 10.09 24.37
MA-News-Sup 3K + Weak-Sup 37.40 16.87 34.51
MA-News-Sup 10K 38.71 18.02 35.78
MA-News-Sup 10K + Weak-Sup 39.92 18.87 36.98

Demo

We provide a demo on a real news on Feb. 2021. (see demo_input.json).

To run the demo, download our trained model here, and run the command below

python demo.py --ckpt_path logs/weaksup/docs100000/best_model.ckpt
Owner
Bowen Tan
Bowen Tan
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
MBPO (paper: When to trust your model: Model-based policy optimization) in offline RL settings

offline-MBPO This repository contains the code of a version of model-based RL algorithm MBPO, which is modified to perform in offline RL settings Pape

LxzGordon 1 Oct 24, 2021
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022