Neural Articulated Radiance Field

Related tags

Deep LearningNARF
Overview

Neural Articulated Radiance Field

NARF

Neural Articulated Radiance Field
Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada
ICCV 2021

[Paper] [Code]

Abstract

We present Neural Articulated Radiance Field (NARF), a novel deformable 3D representation for articulated objects learned from images. While recent advances in 3D implicit representation have made it possible to learn models of complex objects, learning pose-controllable representations of articulated objects remains a challenge, as current methods require 3D shape supervision and are unable to render appearance. In formulating an implicit representation of 3D articulated objects, our method considers only the rigid transformation of the most relevant object part in solving for the radiance field at each 3D location. In this way, the proposed method represents pose-dependent changes without significantly increasing the computational complexity. NARF is fully differentiable and can be trained from images with pose annotations. Moreover, through the use of an autoencoder, it can learn appearance variations over multiple instances of an object class. Experiments show that the proposed method is efficient and can generalize well to novel poses.

Method

We extend Neural Radiance Fields (NeRF) to articulated objects. NARF is a NeRF conditioned on skeletal parameters and skeletal posture, and is an MLP that outputs the density and color of a point with 3D position and 2D viewing direction as input. Since articulated objects can be regarded as multiple rigid bodies connected by joints, the following two assumptions can be made

  • The density of each part does not change in the coordinate system fixed to the part.
  • A point on the surface of the object belongs to only one of the parts.

Therefore, we transform the input 3D coordinates into local coordinates of each part and use them as input for the model. From the second hypothesis, we use selector MLP to select only one necessary coordinate and mask the others.

An overview of the model is shown in the figure.

overview

The model is trained with the L2 loss between the generated image and the ground truth image.

Results

The proposed NARF is capable of rendering images with explicit control of the viewpoint, bone pose, and bone parameters. These representations are disentangled and can be controlled independently.

Viewpoint change (seen in training)

Pose change (unseen in training)

Bone length change (unseen in training)

NARF generalizes well to unseen viewpoints during training.

Furthermore, NARF can render segmentation for each part by visualizing the output values of the selector.

NARF can learn appearance variations by combining it with an autoencoder. The video below visualizes the disentangled representations and segmentation masks learned by NARF autoencoder.

Code

Envirionment

python 3.7.*
pytorch >= 1.7.1
torchvision >= 0.8.2

pip install tensorboardx pyyaml opencv-python pandas ninja easydict tqdm scipy scikit-image

Dataset preparation

THUman

Please refer to https://github.com/nogu-atsu/NARF/tree/master/data/THUman

Your own dataset

Coming soon.

Training

  • Write config file like NARF/configs/THUman/results_wxl_20181008_wlz_3_M/NARF_D.yml. Do not change default.yml

    • out_root: root directory to save models
    • out: experiment name
    • data_root: directory the dataset is in
  • Run training specifying a config file

    CUDA_VISIBLE_DEVICES=0 python train.py --config NARF/configs/[your_config.yml] --num_workers 1

  • Distributed data parallel

    python train_ddp.py --config NARF/configs/[your_config.yml] --gpus 4 --num_workers 1

Validation

  • Single gpu

    python train.py --config NARF/configs/[your_config.yml] --num_workers 1 --validation --resume_latest

  • Multiple gpus

    python train_ddp.py --config NARF/configs/[your_config.yml] --gpus 4 --num_workers 1 --validation --resume_latest

  • The results are saved to val_metrics.json in the same directory as the snapshots.

Computational cost

python computational_cost.py --config NARF/configs/[your_config.yml]

Visualize results

  • Generate interpolation videos

    cd visualize
    python NARF_interpolation.py --config ../NARF/configs/[your_config.yml]
    

    The results are saved to the same directory as the snapshots. With the default settings, it takes 30 minutes on a V100 gpu to generate a 30-frame video

Acknowledgement

https://github.com/rosinality/stylegan2-pytorch
https://github.com/ZhengZerong/DeepHuman
https://smpl.is.tue.mpg.de/

BibTex

@inproceedings{2021narf,
  author    = {Noguchi, Atsuhiro and Sun, Xiao and Lin, Stephen and Harada, Tatsuya},
  title     = {Neural Articulated Radiance Field},
  booktitle = {International Conference on Computer Vision},
  year      = {2021},
}
Owner
Atsuhiro Noguchi
Atsuhiro Noguchi
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022