Shared code for training sentence embeddings with Flax / JAX

Overview

flax-sentence-embeddings

This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pairs.

You can add your code by creating a pull request.

Dataloading

Dowload data

You can download the data using this basic python script at the root of the project. Download should be completed in about 20 minutes given your connection speed. Total size on disk is arround 25G.

python dataset/download_data.py --dataset_list=datasets_list.tsv --data_path=PATH_TO_STORE_DATASETS

Dataloading

First implementation of the dataloader takes as input a single jsonl.gz file. It creates a pointer on the file such that samples are loaded one by one. The implementation is based on torch standard Dataloader and Dataset classes. The class supports num_worker>0 such that data loading is done in a background process on the CPU, i.e. the data is loaded and tokenized in parallel to training the network. This avoid to create a bottleneck from I/O and tokenization. The implementation currently return {'anchor': '...,' 'positive': '...'}

from dataset.dataset import IterableCorpusDataset

corpus_dataset = IterableCorpusDataset(
  file_path=os.path.join(PATH_TO_STORE_DATASETS, 'stackexchange_duplicate_questions_title_title.json.gz'), 
  batch_size=2,
  num_workers=2, 
  transform=None)

corpus_dataset_itr = iter(corpus_dataset)
next(corpus_dataset_itr)

# {'anchor': 'Can anyone explain all these Developer Options?',
#  'positive': 'what is the advantage of using the GPU rendering options in Android?'}

def collate(batch_input_str):
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
    batch = {'anchor': tokenizer.batch_encode_plus([b['anchor'] for b in batch_input_str], pad_to_max_length=True),
             'positive': tokenizer.batch_encode_plus([b['positive'] for b in batch_input_str], pad_to_max_length=True)}
    return batch

corpus_dataloader = DataLoader(
  corpus_dataset,
  batch_size=2,
  num_workers=2,
  collate_fn=collate,
  pin_memory=False,
  drop_last=True,
  shuffle=False)

print(next(iter(corpus_dataloader)))

# {'anchor': {'input_ids': [[101, 4531, 2019, 2523, 2090, 2048, 4725, 1997, 2966, 8830, 1998, 1037, 7142, 8023, 102, 0, 0, 0], [101, 1039, 1001, 10463, 5164, 1061, 2100, 2100, 24335, 26876, 11927, 4779, 4779, 2102, 2000, 3058, 7292, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}, 'positive': {'input_ids': [[101, 1045, 2031, 2182, 2007, 2033, 1010, 2048, 4725, 1997, 8830, 1025, 1037, 3115, 2729, 4118, 1010, 1998, 1037, 17009, 8830, 1012, 2367, 3633, 4374, 2367, 4118, 1010, 2049, 2035, 18154, 11095, 1012, 1045, 2572, 2667, 2000, 2424, 1996, 2523, 1997, 1996, 17009, 8830, 1998, 1037, 1005, 2092, 2108, 3556, 1005, 2029, 2003, 1037, 15973, 3643, 1012, 2054, 2003, 1996, 2190, 2126, 2000, 2424, 2151, 8924, 1029, 1041, 1012, 1043, 1012, 8833, 6553, 26237, 2944, 1029, 102], [101, 1045, 2572, 2667, 2000, 10463, 1037, 5164, 3058, 2046, 1037, 4289, 2005, 29296, 3058, 7292, 1012, 1996, 4289, 2003, 2066, 1024, 1000, 2297, 2692, 20958, 2620, 17134, 19317, 19317, 1000, 1045, 2228, 2023, 1041, 16211, 4570, 2000, 1061, 2100, 2100, 24335, 26876, 11927, 4779, 4779, 2102, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}}

=======

Installation

Poetry

A Poetry toml is provided to manage dependencies in a virtualenv. Check https://python-poetry.org/

Once you've installed poetry, you can connect to virtual env and update dependencies:

poetry shell
poetry update
poetry install

requirements.txt

Someone on your platform should generate it once with following command.

poetry export -f requirements.txt --output requirements.txt

Rust compiler for hugginface tokenizers

  • Hugginface tokenizers require a Rust compiler so install one.

custom libs

  • If you want a specific version of any library, edit the pyproject.toml, add it and/or replace "*" by it.
Owner
Nils Reimers
Nils Reimers
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the c

Google Research 457 Dec 23, 2022
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! 🚀 Run the demo notebook to train 🚀 Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

ETS 49 Sep 12, 2022
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022
Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play

Ilaria Manco 91 Dec 23, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 829 Jan 07, 2023
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

Steven Loria 8.4k Dec 26, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
Lumped-element impedance calculator and frequency-domain plotter.

fastZ: Lumped-Element Impedance Calculator fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include: Sup

Wesley Hileman 47 Nov 18, 2022
📔️ Generate a text-based journal from a template file.

JGen 📔️ Generate a text-based journal from a template file. Contents Getting Started Example Overview Usage Details Reserved Keywords Gotchas Getting

Harrison Broadbent 21 Sep 25, 2022
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Yoon Kim 43 Dec 23, 2022
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
Official code repository of the paper Linear Transformers Are Secretly Fast Weight Programmers.

Linear Transformers Are Secretly Fast Weight Programmers This repository contains the code accompanying the paper Linear Transformers Are Secretly Fas

Imanol Schlag 77 Dec 19, 2022
RecipeReduce: Simplified Recipe Processing for Lazy Programmers

RecipeReduce This repo will help you figure out the amount of ingredients to buy for a certain number of meals with selected recipes. RecipeReduce Get

Qibin Chen 9 Apr 22, 2022