This repository contains the files for running the Patchify GUI.

Overview

Repository Name >> Train-Test-Validation-Dataset-Generation

App Name >> Patchify

Description >> This app is designed for crop images and creating small patches of a large image e.g. Satellite/Aerial Images, which will then be used for training and testing Deep Learning models specifically semantic segmentation models.

Functionalities: Patchify is capable of:

  • Crop the large image into small patches based on the user-defined patch window-size and patch stride/step independently in two x and y directions.
  • Augmenting the cropped dataset to expand the size of the training dataset and make the model to improve the model performance with better generalizing for unseen samples.
  • Dividing the created dataset into different Train, Test, and Validation dataset with user defined percentages.

A picture of Patchify App is shown below:

Parameters:

  • Input Image: is the input large image need to be cropped into small patches. It can be whether raster or its label image. (The produced results will in the same format as the input image)

  • Export Folder: is the directory for saving the generated cropped patches.

  • Window Size: is the size of the cropping window which is equal to the size of the generated small patches. (X is the patch/cropped images' length in X direction and Y is their length in Y direction.)

  • Stride: is the step size of the moving window for generating the patches. It can move in different step sizes in X and Y directions.

  • Output name: is the constant part of the generated patches' name.

  • Training Percentage: is the percentage of Total generated patches goes into Training Dataset.

  • Testing Percentage: is the percentage of Total generated patches goes into Testing Dataset.

  • Validation Percentage: is the percentage of Total generated patches goes into Validation Dataset.

  • Original Image: is the original version of the cropped patch at the location of moving/sliding window.

  • Rotate 90 Degrees: is the version of original image rotated 90 degrees clockwise.

  • Rotate 180 Degrees: is the version of original image rotated 180 degrees clockwise.

  • Rotate 270 Degrees: is the version of original image rotated 270 degrees clockwise.

  • Flip Vertically: is the version of original image flipped vertically.

  • Flip Horizontally: is the version of original image flipped horizontally.

  • Flip Verticall and Horizontally: is the version of original image flipped both vertically and horizontally .

  • Start Patching: starts the patching operations based on the selected parameters.

  • Cancel: is the button for stopping the patching operations and/or closing the Patchify App.

  • Augmentation section has two buttoms. All button selects all the augmentation methods. In case a different format should be checked manually, the Custom Selection can be selected.

Important Notes:

  • if none of the Train, Testing, Validation percentages is filled, Then the Results will only produce Total cropped patches and the dataset spliting section won't run.
  • Make sure you have selected an image, the destination folder for storing and the generated patch name before pressing "Start Patchify" button.

Implementation:

patchify.py is the only file you need to run. But before make sure you have installed all the required python libraries including opencv, PyQt5. Be sure to use the latest version of pip along with python 3.7

Owner
Salar Ghaffarian
Remote Sensing and GIScientist - MSc in Geomatics Engineering - I am specialist in using Deep learning, Computer vision, and machine learning methods.
Salar Ghaffarian
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023