Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Overview

causal-bald

| Abstract | Installation | Example | Citation | Reproducing Results DUE

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Evolution of CATE function with Causal BALD acquisition strategy

Abstract

Estimating personalized treatment effects from high-dimensional observational data is essential in situations where experimental designs are infeasible, unethical or expensive. Existing approaches rely on fitting deep models on outcomes observed for treated and control populations, but when measuring the outcome for an individual is costly (e.g. biopsy) a sample efficient strategy for acquiring outcomes is required. Deep Bayesian active learning provides a framework for efficient data acquisition by selecting points with high uncertainty. However, naive application of existing methods selects training data that is biased toward regions where the treatment effect cannot be identified because there is non-overlapping support between the treated and control populations. To maximize sample efficiency for learning personalized treatment effects, we introduce new acquisition functions grounded in information theory that bias data acquisition towards regions where overlap is satisfied, by combining insights from deep Bayesian active learning and causal inference. We demonstrate the performance of the proposed acquisition strategies on synthetic and semi-synthetic datasets IHDP and CMNIST and their extensions which aim to simulate common dataset biases and pathologies.

Installation

$ git clone [email protected]:[anon]/causal-bald.git
$ cd causal-bald
$ conda env create -f environment.yml
$ conda activate causal-bald

[Optional] For developer mode

$ pip install -e .

Example

Active learning loop

First run using random acquisition:

causal-bald \
    active-learning \
        --job-dir experiments/ \
        --num-trials 5 \
        --step-size 10 \
        --warm-start-size 100 \
        --max-acquisitions 38 \
        --acquisition-function random \
        --temperature 0.25 \
        --gpu-per-trial 0.2 \
    ihdp \
        --root assets/ \
    deep-kernel-gp

Now run using $\mu\rho\textrm{-BALD}$ acquisition.

causal-bald \
    active-learning \
        --job-dir experiments/ \
        --num-trials 5 \
        --step-size 10 \
        --warm-start-size 100 \
        --max-acquisitions 38 \
        --acquisition-function mu-rho \
        --temperature 0.25 \
        --gpu-per-trial 0.2 \
    ihdp \
        --root assets/ \
    deep-kernel-gp

Evaluation

Evaluate PEHE at each acquisition step

causal-bald \
    evaluate \
        --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-random_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ \
        --output-dir experiments/due/ihdp \
    pehe
causal-bald \
    evaluate \
        --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ \
        --output-dir experiments/due/ihdp \
    pehe

Plot results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/ihdp \
    plot-convergence \
        -m mu-rho \
        -m random

Plotting convergence of acquisitions. Comparing random and mu-rho for example code

Citation

If you find this code helpful for your work, please cite our paper Paper as

@article{jesson2021causal,
  title={Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data},
  author={Jesson, Andrew and Tigas, Panagiotis and van Amersfoort, Joost and Kirsch, Andreas and Shalit, Uri and Gal, Yarin},
  journal={Advances in Neural Information Processing Systems},
  volume={35},
  year={2021}
}

Reprodcuing Results Due

IHDP

$\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-mu-pi_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-rho_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-pi_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

$\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-tau_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Random

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-random_temp-0.25/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 200 --step-size 10 --warm-start-size 100 --max-acquisitions 38 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.2 ihdp --root assets/ deep-kernel-gp
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-100_ma-38_af-sundin_temp-1.0/ihdp/deep_kernel_gp/kernel-Matern32_ip-100-dh-200_do-1_dp-3_ns--1.0_dr-0.1_sn-0.95_lr-0.001_bs-100_ep-500/ --output-dir experiments/due/ihdp pehe

Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/ihdp \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin

Synthetic

Synthetic dataset

Synthetic: $\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu-rho_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/ihdp pehe

Synthetic: $\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-mu-pi_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-rho_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-pi_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: $\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-tau_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Random

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-random_temp-0.25/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 40 --step-size 10 --warm-start-size 10 --max-acquisitions 31 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.2 synthetic deep-kernel-gp --kernel RBF --dim-hidden 100 --num-inducing-points 20 --negative-slope 0.0 --batch-size 200 --dropout-rate 0.2
causal-bald evaluate --experiment-dir experiments/active_learning/ss-10_ws-10_ma-31_af-sundin_temp-1.0/synthetic/deep_kernel_gp/kernel-RBF_ip-20-dh-100_do-1_dp-3_ns-0.0_dr-0.2_sn-0.95_lr-0.001_bs-200_ep-500/ --output-dir experiments/due/synthetic pehe

Synthetic: Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/synthetic \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin

CMNIST

CMNIST dataset

CMNIST: $\mu\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu-rho --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu-rho_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\mu$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/ihdp pehe

CMNIST: $\mu\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function mu-pi --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-mu-pi_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\rho$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function rho --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-rho_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\pi$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function pi --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-pi_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: $\tau$-BALD

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function tau --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-tau_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Random

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function random --temperature 0.25 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-random_temp-0.25/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Sundin

causal-bald active-learning --job-dir experiments/ --num-trials 10 --step-size 50 --warm-start-size 250 --max-acquisitions 56 --acquisition-function sundin --temperature 1.0 --gpu-per-trial 0.5 cmnist --root assets/ deep-kernel-gp --kernel RBF --depth 2 --dropout-rate 0.05 --spectral-norm 3.0 --batch-size 64
causal-bald evaluate --experiment-dir experiments/active_learning/ss-50_ws-250_ma-56_af-sundin_temp-1.0/cmnist/deep_kernel_gp/kernel-RBF_ip-100-dh-200_do-1_dp-2_ns--1.0_dr-0.05_sn-3.0_lr-0.001_bs-64_ep-500/ --output-dir experiments/due/cmnist pehe

CMNIST: Plot Results

causal-bald \
    evaluate \
        --experiment-dir experiments/due/cmnist \
    plot-convergence \
        -m mu-rho \
        -m mu \
        -m mu-pi \
        -m rho \ \
        -m pi
        -m tau \
        -m random \
        -m sundin
Owner
OATML
Oxford Applied and Theoretical Machine Learning Group
OATML
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021