Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Related tags

Deep Learninguclser20
Overview

Unsupervised Contrastive Learning of
Sound Event Representations

This repository contains the code for the following paper. If you use this code or part of it, please cite:

Eduardo Fonseca, Diego Ortego, Kevin McGuinness, Noel E. O'Connor, Xavier Serra, "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

arXiv slides poster blog post video

We propose to learn sound event representations using the proxy task of contrasting differently augmented views of sound events, inspired by SimCLR [1]. The different views are computed by:

  • sampling TF patches at random within every input clip,
  • mixing resulting patches with unrelated background clips (mix-back), and
  • other data augmentations (DAs) (RRC, compression, noise addition, SpecAugment [2]).

Our proposed system is illustrated in the figure.

system

Our results suggest that unsupervised contrastive pre-training can mitigate the impact of data scarcity and increase robustness against noisy labels. Please check our paper for more details, or have a quicker look at our slide deck, poster, blog post, or video presentation (see links above).

This repository contains the framework that we used for our paper. It comprises the basic stages to learn an audio representation via unsupervised contrastive learning, and then evaluate the representation via supervised sound event classifcation. The system is implemented in PyTorch.

Dependencies

This framework is tested on Ubuntu 18.04 using a conda environment. To duplicate the conda environment:

conda create --name <envname> --file spec-file.txt

Directories and files

FSDnoisy18k/ includes folders to locate the FSDnoisy18k dataset and a FSDnoisy18k.py to load the dataset (train, val, test), including the data loader for contrastive and supervised training, applying transforms or mix-back when appropriate
config/ includes *.yaml files defining parameters for the different training modes
da/ contains data augmentation code, including augmentations mentioned in our paper and more
extract/ contains feature extraction code. Computes an .hdf5 file containing log-mel spectrograms and associated labels for a given subset of data
logs/ folder for output logs
models/ contains definitions for the architectures used (ResNet-18, VGG-like and CRNN)
pth/ contains provided pre-trained models for ResNet-18, VGG-like and CRNN
src/ contains functions for training and evaluation in both supervised and unsupervised fashion
main_train.py is the main script
spec-file.txt contains conda environment specs

Usage

(0) Download the dataset

Download FSDnoisy18k [3] from Zenodo through the dataset companion site, unzip it and locate it in a given directory. Fix paths to dataset in ctrl section of *.yaml. It can be useful to have a look at the different training sets of FSDnoisy18k: a larger set of noisy labels and a small set of clean data [3]. We use them for training/validation in different ways.

(1) Prepare the dataset

Create an .hdf5 file containing log-mel spectrograms and associated labels for each subset of data:

python extract/wav2spec.py -m test -s config/params_unsupervised_cl.yaml

Use -m with train, val or test to extract features from each subset. All the extraction parameters are listed in params_unsupervised_cl.yaml. Fix path to .hdf5 files in ctrl section of *.yaml.

(2) Run experiment

Our paper comprises three training modes. For convenience, we provide yaml files defining the setup for each of them.

  1. Unsupervised contrastive representation learning by comparing differently augmented views of sound events. The outcome of this stage is a trained encoder to produce low-dimensional representations. Trained encoders are saved under results_models/ using a folder name based on the string experiment_name in the corresponding yaml (make sure to change it).
CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_unsupervised_cl.yaml &> logs/output_unsup_cl.out
  1. Evaluation of the representation using a previously trained encoder. Here, we do supervised learning by minimizing cross entropy loss without data agumentation. Currently, we load the provided pre-trained models sitting in pth/ (you can change this in main_train.py, search for select model). We follow two evaluation methods:

    • Linear Evaluation: train an additional linear classifier on top of the pre-trained unsupervised embeddings.

      CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_supervised_lineval.yaml &> logs/output_lineval.out
      
    • End-to-end Fine Tuning: fine-tune entire model on two relevant downstream tasks after initializing with pre-trained weights. The two downstream tasks are:

      • training on the larger set of noisy labels and validate on train_clean. This is chosen by selecting train_on_clean: 0 in the yaml.
      • training on the small set of clean data (allowing 15% for validation). This is chosen by selecting train_on_clean: 1 in the yaml.

      After choosing the training set for the downstream task, run:

      CUDA_VISIBLE_DEVICES=0 python main_train.py -p config/params_supervised_finetune.yaml &> logs/output_finetune.out
      

The setup in the yaml files should provide the best results reported in our paper. JFYI, the main flags that determine the training mode are downstream, lin_eval and method in the corresponding yaml (they are already adequately set in each yaml).

(3) See results:

Check the logs/*.out for printed results at the end. Main evaluation metric is balanced (macro) top-1 accuracy. Trained models are saved under results_models/models* and some metrics are saved under results_models/metrics*.

Model Zoo

We provide pre-trained encoders as described in our paper, for ResNet-18, VGG-like and CRNN architectures. See pth/ folder. Note that better encoders could likely be obtained through a more exhaustive exploration of the data augmentation compositions, thus defining a more challenging proxy task. Also, we trained on FSDnoisy18k due to our limited compute resources at the time, yet this framework can be directly applied to other larger datasets such as FSD50K or AudioSet.

Citation

@inproceedings{fonseca2021unsupervised,
  title={Unsupervised Contrastive Learning of Sound Event Representations},
  author={Fonseca, Eduardo and Ortego, Diego and McGuinness, Kevin and O'Connor, Noel E. and Serra, Xavier},
  booktitle={2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  year={2021},
  organization={IEEE}
}

Contact

You are welcome to contact [email protected] should you have any question/suggestion. You can also create an issue.

Acknowledgment

This work is a collaboration between the MTG-UPF and Dublin City University's Insight Centre. This work is partially supported by Science Foundation Ireland (SFI) under grant number SFI/15/SIRG/3283 and by the Young European Research University Network under a 2020 mobility award. Eduardo Fonseca is partially supported by a Google Faculty Research Award 2018. The authors are grateful for the GPUs donated by NVIDIA.

References

[1] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations,” in Int. Conf. on Mach. Learn. (ICML), 2020

[2] Park et al., SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. InterSpeech 2019

[3] E. Fonseca, M. Plakal, D. P. W. Ellis, F. Font, X. Favory, X. Serra, "Learning Sound Event Classifiers from Web Audio with Noisy Labels", In proceedings of ICASSP 2019, Brighton, UK

Owner
Eduardo Fonseca
Returning research intern at Google Research | PhD candidate at Music Technology Group, Universitat Pompeu Fabra
Eduardo Fonseca
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
labelpix is a graphical image labeling interface for drawing bounding boxes

Welcome to labelpix 👋 labelpix is a graphical image labeling interface for drawing bounding boxes. 🏠 Homepage Install pip install -r requirements.tx

schissmantics 26 May 24, 2022