A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

Overview

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

The official pytorch implementation of the paper "Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis", the paper can be found here.

0. Data

The datasets used in the paper can be found at link.

After testing on over 20 datasets with each has less than 100 images, this GAN converges on 80% of them. I still cannot summarize an obvious pattern of the "good properties" for a dataset which this GAN can converge on, please feel free to try with your own datasets.

1. Description

The code is structured as follows:

  • models.py: all the models' structure definition.

  • operation.py: the helper functions and data loading methods during training.

  • train.py: the main entry of the code, execute this file to train the model, the intermediate results and checkpoints will be automatically saved periodically into a folder "train_results".

  • eval.py: generates images from a trained generator into a folder, which can be used to calculate FID score.

  • benchmarking: the functions we used to compute FID are located here, it automatically downloads the pytorch official inception model.

  • lpips: this folder contains the code to compute the LPIPS score, the inception model is also automatically download from official location.

  • scripts: this folder contains many scripts you can use to play around the trained model. Including:

    1. style_mix.py: style-mixing as introduced in the paper;
    2. generate_video.py: generating a continuous video from the interpolation of generated images;
    3. find_nearest_neighbor.py: given a generated image, find the closest real-image from the training set;
    4. train_backtracking_one.py: given a real-image, find the latent vector of this image from a trained Generator.

2. How to run

Place all your training images in a folder, and simply call

python train.py --path /path/to/RGB-image-folder

You can also see all the training options by:

python train.py --help

The code will automatically create a new folder (you have to specify the name of the folder using --name option) to store the trained checkpoints and intermediate synthesis results.

Once finish training, you can generate 100 images (or as many as you want) by:

cd ./train_results/name_of_your_training/
python eval.py --n_sample 100 

3. Pre-trained models

The pre-trained models and the respective code of each model are shared here.

You can also use FastGAN to generate images with a pre-packaged Docker image, hosted on the Replicate registry: https://beta.replicate.ai/odegeasslbc/FastGAN

4. Important notes

  1. The provided code is for research use only.

  2. Different model and training configurations are needed on different datasets. You may have to tune the hyper-parameters to get the best results on your own datasets.

    2.1. The hyper-parameters includes: the augmentation options, the model depth (how many layers), the model width (channel numbers of each layer). To change these, you have to change the code in models.py and train.py directly.

    2.2. Please check the code in the shared pre-trained models on how each of them are configured differently on different datasets. Especially, compare the models.py for ffhq and art datasets, you will get an idea on what chages could be made on different datasets.

5. Other notes

  1. The provided scripts are not well organized, contributions are welcomed to clean them.
  2. An third-party implementation of this paper can be found here, where some other techniques are included. I suggest you try both implementation if you find one of them does not work.
Owner
Bingchen Liu
Bingchen Liu
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022