Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Related tags

Deep LearningDeDLOC
Overview

Distributed Deep Learning in Open Collaborations

This repository contains the code for the NeurIPS 2021 paper

"Distributed Deep Learning in Open Collaborations"

Michael Diskin*, Alexey Bukhtiyarov*, Max Ryabinin*, Lucile Saulnier, Quentin Lhoest, Anton Sinitsin, Dmitry Popov, Dmitry Pyrkin, Maxim Kashirin, Alexander Borzunov, Albert Villanova del Moral, Denis Mazur, Ilia Kobelev, Yacine Jernite, Thomas Wolf, Gennady Pekhimenko

Link: ArXiv

Note

This repository contains a snapshot of the code used to conduct experiments in the paper.

Please use the up-to-date version of our library if you want to try out collaborative training and/or set up your own experiment. It contains many substantial improvements, including better documentation and fixed bugs.

Installation

Before running the experiments, please set up the environment by following the steps below:

  • Prepare an environment with python 3.7-3.9. Anaconda is recommended, but not required
  • Install the hivemind library from the master branch or by running pip install hivemind==0.9.9.post1

For all distributed experiments, the installation procedure must be repeated on every machine that participates in the experiment. We recommend using machines with at least 2 CPU cores, 16 GB RAM and, when applicable, a low/mid-tier NVIDIA GPU.

Experiments

The code is divided into several sections matching the corresponding experiments:

  • albert contains the code for controlled experiments with ALBERT-large on WikiText-103;
  • swav is for training SwAV on ImageNet data;
  • sahajbert contains the code used to conduct a public collaborative experiment for the Bengali language ALBERT;
  • p2p is a step-by-step tutorial that explains decentralized NAT traversal and circuit relays.

We recommend running albert experiments first: other experiments build on top of its code and may reqire more careful setup (e.g. for public participation). Furthermore, for this experiment, we provide a script for launching experiments using preemptible GPUs in the cloud.

Acknowledgements

This project is the result of a collaboration between Yandex, Hugging Face, MIPT, HSE University, University of Toronto, Vector Institute, and Neuropark.

We also thank Stas Bekman, Dmitry Abulkhanov, Roman Zhytar, Alexander Ploshkin, Vsevolod Plokhotnyuk and Roman Kail for their invaluable help with building the training infrastructure. Also, we thank Abhishek Thakur for helping with downstream evaluation and Tanmoy Sarkar with Omar Sanseviero, who helped us organize the collaborative experiment and gave regular status updates to the participants over the course of the training run.

Contacts

Feel free to ask any questions in our Discord chat or by email.

Citation

@inproceedings{diskin2021distributed,
    title = {Distributed Deep Learning In Open Collaborations},
    author = {Michael Diskin and Alexey Bukhtiyarov and Max Ryabinin and Lucile Saulnier and Quentin Lhoest and Anton Sinitsin and Dmitry Popov and Dmitriy Pyrkin and Maxim Kashirin and Alexander Borzunov and Albert Villanova del Moral and Denis Mazur and Ilia Kobelev and Yacine Jernite and Thomas Wolf and Gennady Pekhimenko},
    booktitle = {Advances in Neural Information Processing Systems},
    editor = {A. Beygelzimer and Y. Dauphin and P. Liang and J. Wortman Vaughan},
    year = {2021},
    url = {https://openreview.net/forum?id=FYHktcK-7v}
}
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022