Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Overview

Improving Contrastive Learning by Visualizing Feature Transformation

This project hosts the codes, models and visualization tools for the paper:

Improving Contrastive Learning by Visualizing Feature Transformation,
Rui Zhu*, Bingchen Zhao*, Jingen Liu, Zhenglong Sun, Chang Wen Chen
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, Oral
arXiv preprint (arXiv 2108.02982)

@inproceedings{zhu2021Improving,
  title={Improving Contrastive Learning by Visualizing Feature Transformation},
  author={Zhu, Rui and Zhao, Bingchen and Liu, Jingen and Sun, Zhenglong and Chen, Chang Wen},
  booktitle =  {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

highlights2

Highlights

  • Visualization Tools: We provide a visualization tool for pos/neg score distribution, which enables us to analyze, interpret and understand the contrastive learning process.
  • Feature Transformation: Inspired by the visualization, we propose a simple yet effective feature transformation (FT), which creates both hard positives and diversified negatives to enhance the training. FT enables to learn more view-invariant and discriminative representations.
  • Less Task-biased: FT makes the model less “task-bias”, which means we can achievesignificant performance improvement on various downstream tasks (object detection, instance segmentation, and long-tailed classification).

highlights

Updates

  • Code, pre-trained models and visualization tools are released. (07/08/2021)

Installation

This project is mainly based on the open-source code PyContrast.

Please refer to the INSTALL.md and RUN.md for installation and dataset preparation.

Models

For your convenience, we provide the following pre-trained models on ImageNet-1K and ImageNet-100.

pre-train method pre-train dataset backbone #epoch ImageNet-1K VOC det AP50 COCO det AP Link
Supervised ImageNet-1K ResNet-50 - 76.1 81.3 38.2 download
MoCo-v1 ImageNet-1K ResNet-50 200 60.6 81.5 38.5 download
MoCo-v1+FT ImageNet-1K ResNet-50 200 61.9 82.0 39.0 download
MoCo-v2 ImageNet-1K ResNet-50 200 67.5 82.4 39.0 download
MoCo-v2+FT ImageNet-1K ResNet-50 200 69.6 83.3 39.5 download
MoCo-v1+FT ImageNet-100 ResNet-50 200 IN-100 result 77.2 - - download

Note:

  • See our paper for more results on different benchmarks.

Usage

Training on IN-1K

python main_contrast.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet  --epochs 200 --input_res 224 --cosine --batch_size 256 --learning_rate 0.03   --mixnorm --mixnorm_target posneg --sep_alpha --pos_alpha 2.0 --neg_alpha 1.6 --mask_distribution beta --expolation_mask --alpha 0.999 --multiprocessing-distributed --world-size 1 --rank 0 --save_score

Linear Evaluation on IN-1K

python main_linear.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset --ckpt your/path/to/pretrain_model   --n_class 1000 --multiprocessing-distributed --world-size 1 --rank 0 --epochs 100 --lr_decay_epochs 60,80

Training on IN-100

python main_contrast.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet100  --imagenet100path your/path/to/imagenet100.class  --epochs 200 --input_res 224 --cosine --batch_size 256 --learning_rate 0.03   --mixnorm --mixnorm_target posneg --sep_alpha --pos_alpha 2.0 --neg_alpha 1.6 --mask_distribution beta --expolation_mask --alpha 0.999 --multiprocessing-distributed --world-size 1 --rank 0 --save_score

Linear Evaluation on IN-100

python main_linear.py --method MoCov2 --data_folder your/path/to/imagenet-1K/dataset  --dataset imagenet100  --imagenet100path your/path/to/imagenet100.class  --n_class 100  --ckpt your/path/to/pretrain_model  --multiprocessing-distributed --world-size 1 --rank 0 

Transferring to Object Detection

Please refer to DenseCL and MoCo for transferring to object detection.

Visualization Tools

  • Our visualization is offline, which almost does not affect the training speed. Instead of storing K (65536) pair scores, we save their statistical mean and variance to represent the scores’ distribution. You can refer to the original paper for the details.

  • Visualization code is line 69-74 to store the scores. And then we further process the scores in the IpythonNotebook for drawing.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follow.

@inproceedings{zhu2021Improving,
  title={Improving Contrastive Learning by Visualizing Feature Transformation},
  author={Zhu, Rui and Zhao, Bingchen and Liu, Jingen and Sun, Zhenglong and Chen, Chang Wen},
  booktitle =  {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}
Owner
Bingchen Zhao
Currently study @ Tongji University, Super interested in DL and its applications
Bingchen Zhao
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

BraVe This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short. The model provided in this package wa

DeepMind 44 Nov 20, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021