Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Related tags

Deep Learningcassle
Overview

Self-Supervised Models are Continual Learners

This is the official repository for the paper:

Self-Supervised Models are Continual Learners
Enrico Fini*, Victor Turrisi*, Xavier Alameda-Pineda, Elisa Ricci, Karteek Alahari, Julien Mairal
CVPR 2022

Abstract: Self-supervised models have been shown to produce comparable or better visual representations than their supervised counterparts when trained offline on unlabeled data at scale. However, their efficacy is catastrophically reduced in a Continual Learning (CL) scenario where data is presented to the model sequentially. In this paper, we show that self-supervised loss functions can be seamlessly converted into distillation mechanisms for CL by adding a predictor network that maps the current state of the representations to their past state. This enables us to devise a framework for Continual self-supervised visual representation Learning that (i) significantly improves the quality of the learned representations, (ii) is compatible with several state-of-the-art self-supervised objectives, and (iii) needs little to no hyperparameter tuning. We demonstrate the effectiveness of our approach empirically by training six popular self-supervised models in various CL settings.


Overview of our method and results

NOTE: most of the code in this repository is borrowed from solo-learn

Installation

Use the following commands to create an environment and install the required packages (needs conda):

conda create --name cassle python=3.8
conda activate cassle
conda install pytorch=1.10.2 torchvision cudatoolkit=11.3 -c pytorch
pip install pytorch-lightning==1.5.4 lightning-bolts wandb sklearn einops
pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-cuda110

Remember to check your cuda version and modify the install commands accorgingly.

OPTIONAL: consider installing pillow-SIMD for faster data loading:

pip uninstall pillow
CC="cc -mavx2" pip install -U --force-reinstall pillow-simd

Commands

Here below you can find a few example commands for running our code. The bash scripts with full training configurations for our continual and linear evaluation experiments can be found in the bash_files folder. Use our job_launcher.py to launch continual self-supervised learning experiments. We also provide example code for launching jobs with SLURM where you can pass the desired configuration for your job (bash script, data directory, number of GPUs, walltime, etc...).

NOTE: each experiment uses a different number of gpus (1 for CIFAR100, 2 for ImageNet100 and 4 for DomainNet). You can change this setting directly in the bash scripts.

Fine-tuning

CIFAR100

E.g. running Barlow Twins:

DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0 python job_launcher.py --script bash_files/continual/cifar/barlow_distill.sh

ImageNet100

Class-incremental

E.g. running BYOL:

DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0,1 python job_launcher.py --script bash_files/continual/imagenet-100/class/byol.sh

Data-incremental

E.g. running SimCLR:

DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0,1 python job_launcher.py --script bash_files/continual/imagenet-100/data/simclr.sh

DomainNet

E.g. running SwAV:

DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0,1,2,3 python job_launcher.py --script bash_files/continual/domainnet/swav.sh

CaSSLe

After running fine-tuning, you can also run CaSSLe by just loading the checkpoint of the first task. You will find all the checkpoints in your experiment directory (defaults to "./experiments"). Check the id of your run on WandB to make sure you are loading the correct checkpoint.

CIFAR100

E.g. running Barlow Twins + CaSSLe:

PRETRAINED_PATH=/path/to/task0/checkpoint/ DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0 python job_launcher.py --script bash_files/continual/cifar/barlow_distill.sh

ImageNet100

Class-incremental

E.g. running BYOL + CaSSLe:

PRETRAINED_PATH=/path/to/task0/checkpoint/ DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0,1 python job_launcher.py --script bash_files/continual/imagenet-100/class/byol_distill.sh

Data-incremental

E.g. running SimCLR + CaSSLe:

PRETRAINED_PATH=/path/to/task0/checkpoint/ DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0,1 python job_launcher.py --script bash_files/continual/imagenet-100/data/simclr_distill.sh

DomainNet

E.g. running SwAV + CaSSLe:

PRETRAINED_PATH=/path/to/task0/checkpoint/ DATA_DIR=/path/to/data/dir/ CUDA_VISIBLE_DEVICES=0,1,2,3 python job_launcher.py --script bash_files/continual/domainnet/swav_distill.sh

Linear Evaluation

For linear evaluation you do not need the job launcher. You can simply run the scripts from bash_files/linear, e.g., for VICReg:

PRETRAINED_PATH=/path/to/last/checkpoint/ DATA_DIR=/path/to/data/dir/ bash bash_files/linear/imagenet-100/class/vicreg_linear.sh

Logging

Logging is performed with WandB. Please create an account and specify your --entity YOUR_ENTITY and --project YOUR_PROJECT in the bash scripts. For debugging, or if you do not want all the perks of WandB, you can disable logging by passing --offline in your bash scripts. After training you can always sync an offline run with the following command: wandb sync your/wandb/run/folder.

Citation

If you like our work, please cite our paper:

@inproceedings{fini2021self,
  title={Self-Supervised Models are Continual Learners},
  author={Fini, Enrico and da Costa, Victor G Turrisi and Alameda-Pineda, Xavier and Ricci, Elisa and Alahari, Karteek and Mairal, Julien},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2022}
}
Owner
Enrico Fini
PhD Student at University of Trento
Enrico Fini
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023