[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

Overview

FFB6D

This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv)

Table of Content

Introduction & Citation

FFB6D is a general framework for representation learning from a single RGBD image, and we applied it to the 6D pose estimation task by cascading downstream prediction headers for instance semantic segmentation and 3D keypoint voting prediction from PVN3D(Arxiv, Code, Video). At the representation learning stage of FFB6D, we build bidirectional fusion modules in the full flow of the two networks, where fusion is applied to each encoding and decoding layer. In this way, the two networks can leverage local and global complementary information from the other one to obtain better representations. Moreover, at the output representation stage, we designed a simple but effective 3D keypoints selection algorithm considering the texture and geometry information of objects, which simplifies keypoint localization for precise pose estimation.

Please cite FFB6D & PVN3D if you use this repository in your publications:

@InProceedings{He_2021_CVPR,
author = {He, Yisheng and Huang, Haibin and Fan, Haoqiang and Chen, Qifeng and Sun, Jian},
title = {FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021}
}

@InProceedings{He_2020_CVPR,
author = {He, Yisheng and Sun, Wei and Huang, Haibin and Liu, Jianran and Fan, Haoqiang and Sun, Jian},
title = {PVN3D: A Deep Point-Wise 3D Keypoints Voting Network for 6DoF Pose Estimation},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Installation

  • Install CUDA 10.1 / 10.2

  • Set up python3 environment from requirement.txt:

    pip3 install -r requirement.txt 
  • Install apex:

    git clone https://github.com/NVIDIA/apex
    cd apex
    export TORCH_CUDA_ARCH_LIST="6.0;6.1;6.2;7.0;7.5"  # set the target architecture manually, suggested in issue https://github.com/NVIDIA/apex/issues/605#issuecomment-554453001
    pip3 install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
    cd ..
  • Install normalSpeed, a fast and light-weight normal map estimator:

    git clone https://github.com/hfutcgncas/normalSpeed.git
    cd normalSpeed/normalSpeed
    python3 setup.py install --user
    cd ..
  • Install tkinter through sudo apt install python3-tk

  • Compile RandLA-Net operators:

    cd ffb6d/models/RandLA/
    sh compile_op.sh

Code Structure

[Click to expand]
  • ffb6d
    • ffb6d/common.py: Common configuration of dataset and models, eg. dataset path, keypoints path, batch size and so on.
    • ffb6d/datasets
      • ffb6d/datasets/ycb
        • ffb6d/datasets/ycb/ycb_dataset.py: Data loader for YCB_Video dataset.
        • ffb6d/datasets/ycb/dataset_config
          • ffb6d/datasets/ycb/dataset_config/classes.txt: Object list of YCB_Video dataset.
          • ffb6d/datasets/ycb/dataset_config/radius.txt: Radius of each object in YCB_Video dataset.
          • ffb6d/datasets/ycb/dataset_config/train_data_list.txt: Training set of YCB_Video datset.
          • ffb6d/datasets/ycb/dataset_config/test_data_list.txt: Testing set of YCB_Video dataset.
        • ffb6d/datasets/ycb/ycb_kps
          • ffb6d/datasets/ycb/ycb_kps/{obj_name}_8_kps.txt: ORB-FPS 3D keypoints of an object in the object coordinate system.
          • ffb6d/datasets/ycb/ycb_kps/{obj_name}_corners.txt: 8 corners of the 3D bounding box of an object in the object coordinate system.
    • ffb6d/models
      • ffb6d/models/ffb6d.py: Network architecture of the proposed FFB6D.
      • ffb6d/models/cnn
        • ffb6d/models/cnn/extractors.py: Resnet backbones.
        • ffb6d/models/cnn/pspnet.py: PSPNet decoder.
        • ffb6d/models/cnn/ResNet_pretrained_mdl: Resnet pretraiend model weights.
      • ffb6d/models/loss.py: loss calculation for training of FFB6D model.
      • ffb6d/models/pytorch_utils.py: pytorch basic network modules.
      • ffb6d/models/RandLA/: pytorch version of RandLA-Net from RandLA-Net-pytorch
    • ffb6d/utils
      • ffb6d/utils/basic_utils.py: basic functions for data processing, visualization and so on.
      • ffb6d/utils/meanshift_pytorch.py: pytorch version of meanshift algorithm for 3D center point and keypoints voting.
      • ffb6d/utils/pvn3d_eval_utils_kpls.py: Object pose esitimation from predicted center/keypoints offset and evaluation metrics.
      • ffb6d/utils/ip_basic: Image Processing for Basic Depth Completion from ip_basic.
      • ffb6d/utils/dataset_tools
        • ffb6d/utils/dataset_tools/DSTOOL_README.md: README for dataset tools.
        • ffb6d/utils/dataset_tools/requirement.txt: Python3 requirement for dataset tools.
        • ffb6d/utils/dataset_tools/gen_obj_info.py: Generate object info, including SIFT-FPS 3d keypoints, radius etc.
        • ffb6d/utils/dataset_tools/rgbd_rnder_sift_kp3ds.py: Render rgbd images from mesh and extract textured 3d keypoints (SIFT/ORB).
        • ffb6d/utils/dataset_tools/utils.py: Basic utils for mesh, pose, image and system processing.
        • ffb6d/utils/dataset_tools/fps: Furthest point sampling algorithm.
        • ffb6d/utils/dataset_tools/example_mesh: Example mesh models.
    • ffb6d/train_ycb.py: Training & Evaluating code of FFB6D models for the YCB_Video dataset.
    • ffb6d/demo.py: Demo code for visualization.
    • ffb6d/train_ycb.sh: Bash scripts to start the training on the YCB_Video dataset.
    • ffb6d/test_ycb.sh: Bash scripts to start the testing on the YCB_Video dataset.
    • ffb6d/demo_ycb.sh: Bash scripts to start the demo on the YCB_Video_dataset.
    • ffb6d/train_log
      • ffb6d/train_log/ycb
        • ffb6d/train_log/ycb/checkpoints/: Storing trained checkpoints on the YCB_Video dataset.
        • ffb6d/train_log/ycb/eval_results/: Storing evaluated results on the YCB_Video_dataset.
        • ffb6d/train_log/ycb/train_info/: Training log on the YCB_Video_dataset.
  • requirement.txt: python3 environment requirements for pip3 install.
  • figs/: Images shown in README.

Datasets

  • YCB-Video: Download the YCB-Video Dataset from PoseCNN. Unzip it and link the unzippedYCB_Video_Dataset to ffb6d/datasets/ycb/YCB_Video_Dataset:

    ln -s path_to_unzipped_YCB_Video_Dataset ffb6d/datasets/ycb/

Training and evaluating

Training on the YCB-Video Dataset

  • Start training on the YCB-Video Dataset by:

    # commands in train_ycb.sh
    n_gpu=8  # number of gpu to use
    python3 -m torch.distributed.launch --nproc_per_node=$n_gpu train_ycb.py --gpus=$n_gpu

    The trained model checkpoints are stored in train_log/ycb/checkpoints/

    A tip for saving GPU memory: you can open the mixed precision mode to save GPU memory by passing parameters opt_level=O1 to train_ycb.py. The document for apex mixed precision trainnig can be found here.

Evaluating on the YCB-Video Dataset

  • Start evaluating by:
    # commands in test_ycb.sh
    tst_mdl=train_log/ycb/checkpoints/FFB6D_best.pth.tar  # checkpoint to test.
    python3 -m torch.distributed.launch --nproc_per_node=1 train_ycb.py --gpu '0' -eval_net -checkpoint $tst_mdl -test -test_pose # -debug
    You can evaluate different checkpoints by revising the tst_mdl to the path of your target model.
  • Pretrained model: We provide our pre-trained models on onedrive, here. Download the pre-trained model, move it to train_log/ycb/checkpoints/ and modify tst_mdl for testing.

Demo/visualization on the YCB-Video Dataset

  • After training your model or downloading the pre-trained model, you can start the demo by:
    # commands in demo_ycb.sh
    tst_mdl=train_log/ycb/checkpoints/FFB6D_best.pth.tar
    python3 -m demo -checkpoint $tst_mdl -dataset ycb
    The visualization results will be stored in train_log/ycb/eval_results/pose_vis.

Results

  • Evaluation result without any post refinement on the YCB-Video dataset:

    PoseCNN PointFusion DenseFusion PVN3D Our FFF6D
    ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S)
    ALL 75.8 59.9 83.9 - 91.2 82.9 95.5 91.8 96.6 92.7
  • Evaluation result on the LineMOD dataset:

    RGB RGB-D
    PVNet CDPN DPOD PointFusion DenseFusion(iterative) G2L-Net PVN3D FFF6D
    MEAN 86.3 89.9 95.2 73.7 94.3 98.7 99.4 99.7
  • Robustness upon occlusion:

  • Model parameters and speed on the LineMOD dataset (one object / frame) with one 2080Ti GPU:
    Parameters Network Forward Pose Estimation All time
    PVN3D 39.2M 170ms 20ms 190ms
    FFF6D
    33.8M 57ms 18ms 75ms

Adaptation to New Dataset

  • Install and generate required mesh info following DSTOOL_README.

  • Modify info of your new dataset in FFB6D/ffb6d/common.py

  • Write your dataset preprocess script following FFB6D/ffb6d/datasets/ycb/ycb_dataset.py. Note that you should modify or call the function that get your model info, such as 3D keypoints, center points, and radius properly.

  • (Very Important!) Visualize and check if you process the data properly, eg, the projected keypoints and center point, the semantic label of each point, etc. For example, you can visualize the projected center point (red point) and selected keypoints (orange points) as follow by running python3 -m datasets.ycb.ycb_dataset.

  • For inference, make sure that you load the 3D keypoints, center point, and radius of your objects in the object coordinate system properly in FFB6D/ffb6d/utils/pvn3d_eval_utils.py.

  • Check that all setting are modified properly by using the ground truth information for evaluation. The result should be high and close to 100 if everything is correct. For example, testing ground truth on the YCB_Video dataset by passing -test_gt parameters to train_ycb.py will get results higher than 99.99:

    tst_mdl=train_log/ycb/checkpoints/FFB6D_best.pth.tar
    python3 -m torch.distributed.launch --nproc_per_node=1 train_ycb.py --gpu '0' -eval_net -checkpoint $tst_mdl -test -test_pose -test_gt
    

To Do

  • Scripts and pre-trained models for LineMOD dataset.

License

Licensed under the MIT License.

Owner
Yisheng (Ethan) He
Ph.D. student @ HKUST
Yisheng (Ethan) He
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot

Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor

Conchylicultor 2.9k Dec 28, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022