CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

Overview

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

This is a repository for the following paper:

  • Keisuke Okumura, Ryo Yonetani, Mai Nishimura, Asako Kanezaki, "CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces," AAMAS, 2022 [paper] [project page]

You need docker (≥v19) and docker-compose (≥v1.29) to implement this repo.

Demo

(generated by ./notebooks/gif.ipynb)

Getting Started

We explain the minimum structure. To reproduce the experiments, see here. The link also includes training data, benchmark instances, and trained models.

Step 1. Create Environment via Docker

  • locally build docker image
docker-compose build        # required time: around 30min~1h
  • run/enter image as a container
docker-compose up -d dev
docker-compose exec dev bash
  • ./.docker-compose.yaml also includes an example (dev-gpu) when NVIDIA Docker is available.
  • The image is based on pytorch/pytorch:1.8.1-cuda10.2-cudnn7-devel and installs CMake, OMPL, etc. Please check ./Dockerfile.
  • The initial setting mounts $PWD/../ctrm_data:/data to store generated demonstrations, models, and evaluation results. So, a new directory (ctrm_data) will be generated automatically next to the root directory.

Step 2. Play with CTRMs

We prepared the minimum example with Jupyter Lab. First, startup your Jupyter Lab:

jupyter lab --allow-root --ip=0.0.0.0

Then, access http://localhost:8888 via your browser and open ./notebooks/CTRM_demo.ipynb. The required token will appear at your terminal. You can see multi-agent path planning enhanced by CTRMs in an instance with 20-30 agents and a few obstacles.

In what follows, we explain how to generate new data, perform training, and evaluate the learned model.

Step 3. Data Generation

The following script generates MAPP demonstrations (instances and solutions).

cd /workspace/scripts
python create_data.py

You now have data in /data/demonstrations/xxxx-xx-xx_xx-xx-xx/ (in docker env), like the below.

The script uses hydra. You can create another data, e.g., with Conflict-based Search [1] (default: prioritized planning [2]).

python create_data.py planner=cbs

You can find details and explanations for all parameters with:

python create_data.py --help

Step 4. Model Training

python train.py datadir=/data/demonstrations/xxxx-xx-xx_xx-xx-xx

The trained model will be saved in /data/models/yyyy-yy-yy_yy-yy-yy (in docker env).

Step 5. Evaluation

python eval.py \
insdir=/data/demonstrations/xxxx-xx-xx_xx-xx-xx/test \
roadmap=ctrm \
roadmap.pred_basename=/data/models/yyyy-yy-yy_yy-yy-yy/best

The result will be saved in /data/exp/zzzz-zz-zz_zz-zz-zz.

Probably, the planning in all instances will fail. To obtain successful results, we need more data and more training than the default parameters as presented here. Such examples are shown here (experimental settings).

Notes

  • Analysis of the experiments are available in /workspace/notebooks (as Jupyter Notebooks).
  • ./tests uses pytest. Note that it is not comprehensive, rather it was used for the early phase of development.

Documents

A document for the console library is available, which is made by Sphinx.

  • create docs
cd docs; make html
  • To rebuild docs, perform the following before the above.
sphinx-apidoc -e -f -o ./docs ./src

Known Issues

  • Do not set format_input.fov_encoder.map_size larger than 250. We are aware of the issue with pybind11; data may not be transferred correctly.
  • We originally developed this repo for both 2D and 3D problem instances. Hence, most parts of the code can be extended in 3D cases, but it is not fully supported.
  • The current implementation does not rely on FCL (collision checker) since we identified several false-negative detection. As a result, we modeled whole agents and obstacles as circles in 2D spaces to detect collisions easily. However, it is not so hard to adapt other shapes like boxes when you use FCL.

Licence

This software is released under the MIT License, see LICENCE.

Citation

# arXiv version
@article{okumura2022ctrm,
  title={CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces},
  author={Okumura, Keisuke and Yonetani, Ryo and Nishimura, Mai and Kanezaki, Asako},
  journal={arXiv preprint arXiv:2201.09467},
  year={2022}
}

Reference

  1. Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015). Conflict-based search for optimal multi-agent pathfinding. Artificial Intelligence
  2. Silver, D. (2005). Cooperative pathfinding. Proc. AAAI Conf. on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-05)
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023