[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

Overview

MobileSal

IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection

This repository contains full training & testing code, and pretrained saliency maps. We have achieved competitive performance on the RGB-D salient object detection task with a speed of 450fps.

If you run into any problems or feel any difficulties to run this code, do not hesitate to leave issues in this repository.

My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

[PDF]

Requirements

PyTorch

  • Python 3.6+
  • PyTorch >=0.4.1, OpenCV-Python
  • Tested on PyTorch 1.7.1

Jittor

  • Python 3.7+
  • Jittor, OpenCV-Python
  • Tested on Jittor 1.3.1

For Jittor users, we create a branch jittor. So please run the following command first:

git checkout jittor

Installing

Please prepare the required packages.

pip install -r envs/requirements.txt

Data Preparing

Before training/testing our network, please download the training data:

Note: if you are blocked by Google and Baidu services, you can contact me via e-mail and I will send you a copy of data and model weights.

We have processed the data to json format so you can use them without any preprocessing steps. After completion of downloading, extract the data and put them to ./data/ folder. Then, the ./datasets/ folder should contain six folders: NJU2K/, NLPR/, STERE/, SSD/, SIP/, DUT-RGBD/, representing NJU2K, NLPR, STEREO, SSD, SIP, DUTLF-D datasets, respectively.

Train

It is very simple to train our network. We have prepared a script to run the training step:

bash ./tools/train.sh

Pretrained Models

As in our paper, we train our model on the NJU2K_NLPR training set, and test our model on NJU2K_test, NLPR_test, STEREO, SIP, and SSD datasets. For DUTLF-D, we train our model on DUTLF-D training set and evaluate on its testing test.

(Default) Trained on NJU2K_NLPR training set:

(Custom) Training on DUTLF-D training set:

Download them and put them into the pretrained/ folder.

Test / Evaluation / Results

After preparing the pretrained models, it is also very simple to test our network:

bash ./tools/test.sh

The scripts will automatically generate saliency maps on the maps/ directory.

Pretrained Saliency maps

For covenience, we provide the pretrained saliency maps on several datasets as below:

TODO

  1. Release the pretrained models and saliency maps on COME15K dataset.
  2. Release the ONNX model for real-world applications.
  3. Add results with the P2T transformer backbone.

Other Tips

  • I encourage everyone to contact me via my e-mail. My e-mail is: wuyuhuan @ mail.nankai (dot) edu.cn

License

The code is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License for NonCommercial use only.

Citations

If you are using the code/model/data provided here in a publication, please consider citing our work:

@ARTICLE{wu2021mobilesal,
  author={Wu, Yu-Huan and Liu, Yun and Xu, Jun and Bian, Jia-Wang and Gu, Yu-Chao and Cheng, Ming-Ming},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={MobileSal: Extremely Efficient RGB-D Salient Object Detection}, 
  year={2021},
  doi={10.1109/TPAMI.2021.3134684}
}

Acknowlogdement

This repository is built under the help of the following five projects for academic use only:

Owner
Yu-Huan Wu
Ph.D. student at Nankai University
Yu-Huan Wu
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
This repository contains a CBIR system that uses swin transformer to extract image's feature.

Swin-transformer based CBIR This repository contains a CBIR(content-based image retrieval) system. Here we use Swin-transformer to extract query image

JsHou 12 Nov 17, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con

86 Dec 28, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023