PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

Overview

neural-combinatorial-rl-pytorch

PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

I have implemented the basic RL pretraining model with greedy decoding from the paper. An implementation of the supervised learning baseline model is available here. Instead of a critic network, I got my results below on TSP from using an exponential moving average critic. The critic network is simply commented out in my code right now. From correspondence with a few others, it was determined that the exponential moving average critic significantly helped improve results.

My implementation uses a stochastic decoding policy in the pointer network, realized via PyTorch's torch.multinomial(), during training, and beam search (not yet finished, only supports 1 beam a.k.a. greedy) for decoding when testing the model.

Currently, there is support for a sorting task and the planar symmetric Euclidean TSP.

See main.sh for an example of how to run the code.

Use the --load_path $LOAD_PATH and --is_train False flags to load a saved model.

To load a saved model and view the pointer network's attention layer, also use the --plot_attention True flag.

Please, feel free to notify me if you encounter any errors, or if you'd like to submit a pull request to improve this implementation.

Adding other tasks

This implementation can be extended to support other combinatorial optimization problems. See sorting_task.py and tsp_task.py for examples on how to add. The key thing is to provide a dataset class and a reward function that takes in a sample solution, selected by the pointer network from the input, and returns a scalar reward. For the sorting task, the agent received a reward proportional to the length of the longest strictly increasing subsequence in the decoded output (e.g., [1, 3, 5, 2, 4] -> 3/5 = 0.6).

Dependencies

  • Python=3.6 (should be OK with v >= 3.4)
  • PyTorch=0.2 and 0.3
  • tqdm
  • matplotlib
  • tensorboard_logger

PyTorch 0.4 compatibility is available on branch pytorch-0.4.

TSP Results

Results for 1 random seed over 50 epochs (each epoch is 10,000 batches of size 128). After each epoch, I validated performance on 1000 held out graphs. I used the same hyperparameters from the paper, as can be seen in main.sh. The dashed line shows the value indicated in Table 2 of Bello, et. al for comparison. The log scale x axis for the training reward is used to show how the tour length drops early on.

TSP 20 Train TSP 20 Val TSP 50 Train TSP 50 Val

Sort Results

I trained a model on sort10 for 4 epochs of 1,000,000 randomly generated samples. I tested it on a dataset of size 10,000. Then, I tested the same model on sort15 and sort20 to test the generalization capabilities.

Test results on 10,000 samples (A reward of 1.0 means the network perfectly sorted the input):

task average reward variance
sort10 0.9966 0.0005
sort15 0.7484 0.0177
sort20 0.5586 0.0060

Example prediction on sort10:

input: [4, 7, 5, 0, 3, 2, 6, 8, 9, 1]
output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Attention visualization

Plot the pointer network's attention layer with the argument --plot_attention True

TODO

  • Add RL pretraining-Sampling
  • Add RL pretraining-Active Search
  • Active Search
  • Asynchronous training a la A3C
  • Refactor USE_CUDA variable
  • Finish implementing beam search decoding to support > 1 beam
  • Add support for variable length inputs

Acknowledgements

Special thanks to the repos devsisters/neural-combinatorial-rl-tensorflow and MaximumEntropy/Seq2Seq-PyTorch for getting me started, and @ricgama for figuring out that weird bug with clone()

Owner
Patrick E.
Machine Learning PhD Candidate at Univ. of Florida. Deep generative models | object-centric representation learning | RL | transportation
Patrick E.
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022