Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Related tags

Deep Learningmxnet
Overview

Apache MXNet (incubating) for Deep Learning

Master Docs License
Build Status Documentation Status GitHub license

banner

Apache MXNet (incubating) is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scaling effectively to multiple GPUs and multiple machines.

MXNet is also more than a deep learning project. It is also a collection of blue prints and guidelines for building deep learning systems, and interesting insights of DL systems for hackers.

Installation Guide

Install Dependencies to build mxnet for HIP/ROCm

ROCm Installation

Install Dependencies to build mxnet for HIP/CUDA

  • Install CUDA following the NVIDIA’s installation guide to setup MXNet with GPU support

  • Make sure to add CUDA install path to LD_LIBRARY_PATH

  • Example - export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:$LD_LIBRARY_PATH

  • Install the dependencies hipblas, rocrand from source.

Build the MXNet library

  • Step 1: Install build tools.

    sudo apt-get update
    sudo apt-get install -y build-essential
    
  • Step 2: Install OpenBLAS. MXNet uses BLAS and LAPACK libraries for accelerated numerical computations on CPU machine. There are several flavors of BLAS/LAPACK libraries - OpenBLAS, ATLAS and MKL. In this step we install OpenBLAS. You can choose to install ATLAS or MKL.

      sudo apt-get install -y libopenblas-dev liblapack-dev libomp-dev libatlas-dev libatlas-base-dev
  • Step 3: Install OpenCV. Install OpenCV here. MXNet uses OpenCV for efficient image loading and augmentation operations.
      sudo apt-get install -y libopencv-dev
  • Step 4: Download MXNet sources and build MXNet core shared library.
      git clone --recursive https://github.com/ROCmSoftwarePlatform/mxnet.git
      cd mxnet
      export PATH=/opt/rocm/bin:$PATH
  • Step 5: To compile on HCC PLATFORM(HIP/ROCm):
      export HIP_PLATFORM=hcc

To compile on NVCC PLATFORM(HIP/CUDA):

      export HIP_PLATFORM=nvcc
  • Step 6: To enable MIOpen for higher acceleration :

    USE_CUDNN=1
    
  • Step 7:

    If building on CPU:

        make -jn(n=number of cores) USE_GPU=0 (For Ubuntu 16.04)
        make -jn(n=number of cores)  CXX=g++-6 USE_GPU=0 (For Ubuntu 18.04)

If building on GPU:

       make -jn(n=number of cores) USE_GPU=1 (For Ubuntu 16.04)
       make -jn(n=number of cores)  CXX=g++-6 USE_GPU=1 (For Ubuntu 18.04)

On succesfull compilation a library called libmxnet.so is created in mxnet/lib path.

NOTE: USE_CUDA, USE_CUDNN flags can be changed in make/config.mk.

To compile on HIP/CUDA make sure to set USE_CUDA_PATH to right CUDA installation path in make/config.mk. In most cases it is - /usr/local/cuda.

Install the MXNet Python binding

  • Step 1: Install prerequisites - python, setup-tools, python-pip and numpy.
      sudo apt-get install -y python-dev python-setuptools python-numpy python-pip python-scipy
      sudo apt-get install python-tk
      sudo apt install -y fftw3 fftw3-dev pkg-config
  • Step 2: Install the MXNet Python binding.
      cd python
      sudo python setup.py install
  • Step 3: Execute sample example
       cd example/
       cd bayesian-methods/

To run on gpu change mx.cpu() to mx.gpu() in python script (Example- bdk_demo.py)

       $ python bdk_demo.py

Ask Questions

What's New

Contents

Features

  • Design notes providing useful insights that can re-used by other DL projects
  • Flexible configuration for arbitrary computation graph
  • Mix and match imperative and symbolic programming to maximize flexibility and efficiency
  • Lightweight, memory efficient and portable to smart devices
  • Scales up to multi GPUs and distributed setting with auto parallelism
  • Support for Python, R, Scala, C++ and Julia
  • Cloud-friendly and directly compatible with S3, HDFS, and Azure

License

Licensed under an Apache-2.0 license.

Reference Paper

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. In Neural Information Processing Systems, Workshop on Machine Learning Systems, 2015

History

MXNet emerged from a collaboration by the authors of cxxnet, minerva, and purine2. The project reflects what we have learned from the past projects. MXNet combines aspects of each of these projects to achieve flexibility, speed, and memory efficiency.

Owner
ROCm Software Platform
ROCm Software Platform Repository
ROCm Software Platform
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022