Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Related tags

Deep Learningmxnet
Overview

Apache MXNet (incubating) for Deep Learning

Master Docs License
Build Status Documentation Status GitHub license

banner

Apache MXNet (incubating) is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scaling effectively to multiple GPUs and multiple machines.

MXNet is also more than a deep learning project. It is also a collection of blue prints and guidelines for building deep learning systems, and interesting insights of DL systems for hackers.

Installation Guide

Install Dependencies to build mxnet for HIP/ROCm

ROCm Installation

Install Dependencies to build mxnet for HIP/CUDA

  • Install CUDA following the NVIDIA’s installation guide to setup MXNet with GPU support

  • Make sure to add CUDA install path to LD_LIBRARY_PATH

  • Example - export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:$LD_LIBRARY_PATH

  • Install the dependencies hipblas, rocrand from source.

Build the MXNet library

  • Step 1: Install build tools.

    sudo apt-get update
    sudo apt-get install -y build-essential
    
  • Step 2: Install OpenBLAS. MXNet uses BLAS and LAPACK libraries for accelerated numerical computations on CPU machine. There are several flavors of BLAS/LAPACK libraries - OpenBLAS, ATLAS and MKL. In this step we install OpenBLAS. You can choose to install ATLAS or MKL.

      sudo apt-get install -y libopenblas-dev liblapack-dev libomp-dev libatlas-dev libatlas-base-dev
  • Step 3: Install OpenCV. Install OpenCV here. MXNet uses OpenCV for efficient image loading and augmentation operations.
      sudo apt-get install -y libopencv-dev
  • Step 4: Download MXNet sources and build MXNet core shared library.
      git clone --recursive https://github.com/ROCmSoftwarePlatform/mxnet.git
      cd mxnet
      export PATH=/opt/rocm/bin:$PATH
  • Step 5: To compile on HCC PLATFORM(HIP/ROCm):
      export HIP_PLATFORM=hcc

To compile on NVCC PLATFORM(HIP/CUDA):

      export HIP_PLATFORM=nvcc
  • Step 6: To enable MIOpen for higher acceleration :

    USE_CUDNN=1
    
  • Step 7:

    If building on CPU:

        make -jn(n=number of cores) USE_GPU=0 (For Ubuntu 16.04)
        make -jn(n=number of cores)  CXX=g++-6 USE_GPU=0 (For Ubuntu 18.04)

If building on GPU:

       make -jn(n=number of cores) USE_GPU=1 (For Ubuntu 16.04)
       make -jn(n=number of cores)  CXX=g++-6 USE_GPU=1 (For Ubuntu 18.04)

On succesfull compilation a library called libmxnet.so is created in mxnet/lib path.

NOTE: USE_CUDA, USE_CUDNN flags can be changed in make/config.mk.

To compile on HIP/CUDA make sure to set USE_CUDA_PATH to right CUDA installation path in make/config.mk. In most cases it is - /usr/local/cuda.

Install the MXNet Python binding

  • Step 1: Install prerequisites - python, setup-tools, python-pip and numpy.
      sudo apt-get install -y python-dev python-setuptools python-numpy python-pip python-scipy
      sudo apt-get install python-tk
      sudo apt install -y fftw3 fftw3-dev pkg-config
  • Step 2: Install the MXNet Python binding.
      cd python
      sudo python setup.py install
  • Step 3: Execute sample example
       cd example/
       cd bayesian-methods/

To run on gpu change mx.cpu() to mx.gpu() in python script (Example- bdk_demo.py)

       $ python bdk_demo.py

Ask Questions

What's New

Contents

Features

  • Design notes providing useful insights that can re-used by other DL projects
  • Flexible configuration for arbitrary computation graph
  • Mix and match imperative and symbolic programming to maximize flexibility and efficiency
  • Lightweight, memory efficient and portable to smart devices
  • Scales up to multi GPUs and distributed setting with auto parallelism
  • Support for Python, R, Scala, C++ and Julia
  • Cloud-friendly and directly compatible with S3, HDFS, and Azure

License

Licensed under an Apache-2.0 license.

Reference Paper

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. In Neural Information Processing Systems, Workshop on Machine Learning Systems, 2015

History

MXNet emerged from a collaboration by the authors of cxxnet, minerva, and purine2. The project reflects what we have learned from the past projects. MXNet combines aspects of each of these projects to achieve flexibility, speed, and memory efficiency.

Owner
ROCm Software Platform
ROCm Software Platform Repository
ROCm Software Platform
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023