Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Overview

Weakly Supervised Segmentation with TensorFlow

This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

The idea behind weakly supervised segmentation is to train a model using cheap-to-generate label approximations (e.g., bounding boxes) as substitute/guiding labels for computer vision classification tasks that usually require very detailed labels. In semantic labelling, each image pixel is assigned to a specific class (e.g., boat, car, background, etc.). In instance segmentation, all the pixels belonging to the same object instance are given the same instance ID.

Per [2014a], pixelwise mask annotations are far more expensive to generate than object bounding box annotations (requiring up to 15x more time). Some models, like Simply Does It (SDI) [2016a] claim they can use a weak supervision approach to reach 95% of the quality of the fully supervised model, both for semantic labelling and instance segmentation.

Simple Does It (SDI)

Experimental Setup for Instance Segmentation

In weakly supervised instance segmentation, there are no pixel-wise annotations (i.e., no segmentation masks) that can be used to train a model. Yet, we aim to train a model that can still predict segmentation masks by only being given an input image and bounding boxes for the objects of interest in that image.

The masks used for training are generated starting from individual object bounding boxes. For each annotated bounding box, we generate a segmentation mask using the GrabCut method (although, any other method could be used), and train a convnet to regress from the image and bounding box information to the instance segmentation mask.

Note that in the original paper, a more sophisticated segmenter is used (M∩G+).

Network

SDI validates its work repurposing two different instance segmentation architectures (DeepMask [2015a] and DeepLab2 VGG-16 [2016b]). Here we use the OSVOS FCN (See section 3.1 of [2016c]).

Setup

The code in this repo was developed and tested using Anaconda3 v.4.4.0. To reproduce our conda environment, please use the following files:

On Ubuntu:

On Windows:

Jupyter Notebooks

The recommended way to test this implementation is to use the following jupyter notebooks:

  • VGG16 Net Surgery: The weakly supervised segmentation techniques presented in the "Simply Does It" paper use a backbone convnet (either DeepLab or VGG16 network) pre-trained on ImageNet. This pre-trained network takes RGB images as an input (W x H x 3). Remember that the weakly supervised version is trained using 4-channel inputs: RGB + a binary mask with a filled bounding box of the object instance. Therefore, we need to perform net surgery and create a 4-channel input version of the VGG16 net, initialized with the 3-channel parameter values except for the additional convolutional filters (we use Gaussian initialization for them).
  • "Simple Does It" Grabcut Training for Instance Segmentation: This notebook performs training of the SDI Grabcut weakly supervised model for instance segmentation. Following the instructions provided in Section "6. Instance Segmentation Results" of the "Simple Does It" paper, we use the Berkeley-augmented Pascal VOC segmentation dataset that provides per-instance segmentation masks for VOC2012 data. The Berkley augmented dataset can be downloaded from here. Again, the SDI Grabcut training is done using a 4-channel input VGG16 network pre-trained on ImageNet, so make sure to run the VGG16 Net Surgery notebook first!
  • "Simple Does It" Weakly Supervised Instance Segmentation (Testing): The sample results shown in the notebook come from running our trained model on the validation split of the Berkeley-augmented dataset.

Link to Pre-trained model and BK-VOC data files

The pre-processed BK-VOC dataset, "grabcut" segmentations, and results as well as pre-trained models (vgg_16_4chan_weak.ckpt-50000) can be found here:

If you'd rather download the Berkeley-augmented Pascal VOC segmentation dataset that provides per-instance segmentation masks for VOC2012 data from its origin, click here. Then, execute lines similar to these lines in dataset.py to generate the intermediary files used by this project:

if __name__ == '__main__':
    dataset = BKVOCDataset()
    dataset.prepare()

Make sure to set the paths at the top of dataset.py to the correct location:

if sys.platform.startswith("win"):
    _BK_VOC_DATASET = "E:/datasets/bk-voc/benchmark_RELEASE/dataset"
else:
    _BK_VOC_DATASET = '/media/EDrive/datasets/bk-voc/benchmark_RELEASE/dataset'

Training

The fully supervised version of the instance segmentation network whose performance we're trying to match is trained using the RGB images as inputs. The weakly supervised version is trained using 4-channel inputs: RGB + a binary mask with a filled bounding box of the object instance. In the latter case, the same RGB image may appear in several input samples (as many times as there are object instances associated with that RGB image).

To be clear, the output labels used for training are NOT user-provided detailed groundtruth annotations. There are no such groundtruths in the weakly supervised scenario. Instead, the labels are the segmentation masks generated using the GrabCut+ method. The weakly supoervised model is trained to regress from an image and bounding box information to a generated segmentation mask.

Testing

The sample results shown here come from running our trained model on the validation split of the Berkeley-augmented dataset (see the testing notebook). Below, we (very) subjectively categorize them as "pretty good" and "not so great".

Pretty good

Not so great

References

2016

  • [2016a] Khoreva et al. 2016. Simple Does It: Weakly Supervised Instance and Semantic Segmentation. [arXiv] [web]
  • [2016b] Chen et al. 2016. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. [arXiv]
  • [2016c] Caelles et al. 2016. OSVOS: One-Shot Video Object Segmentation. [arXiv]

2015

  • [2015a] Pinheiro et al. 2015. DeepMask: Learning to Segment Object Candidates. [arXiv]

2014

  • [2014a] Lin et al. 2014. Microsoft COCO: Common Objects in Context. [arXiv] [web]
Owner
Phil Ferriere
Former Microsoft Development Lead passionate about Deep Learning with a focus on Computer Vision.
Phil Ferriere
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp KrĂ€henbĂŒhl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021