Alignment Attention Fusion framework for Few-Shot Object Detection

Overview

AAF framework

Framework generalities

This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is to propose a flexible framework to implement various attention mechanisms for Few-Shot Object Detection. The framework is composed of 3 different modules: Spatial Alignment, Global Attention and Fusion Layer, which are applied successively to combine features from query and support images.

The inputs of the framework are:

  • query_features List[Tensor(B, C, H, W)]: Query features at different levels. For each level, the features are of shape Batch x Channels x Height x Width.
  • support_features List[Tensor(N, C, H', W')] : Support features at different level. First dimension correspond to the number of support images, regrouped by class: N = N_WAY * K_SHOT.
  • support_targets List[BoxList] bounding boxes for object in each support image.

The framework can be configured using a separate config file. Examples of such files are available under /config_files/aaf_framework/. The structure of these files is simple:

ALIGN_FIRST: #True/False Run Alignment before Attention when True
OUT_CH: # Number of features output by the fusion layer
ALIGNMENT:
    MODE: # Name of the alignment module selected
ATTENTION:
    MODE: # Name of the attention module selected
FUSION:
    MODE: # Name of the fusion module selected
File name Method Alignment Attention Fusion
identity.yaml Identity IDENTITY IDENTITY IDENTITY
feature_reweighting.yaml FSOD via feature reweighting IDENTITY REWEIGHTING_BATCH IDENTITY
meta_faster_rcnn.yaml Meta Faster-RCNN SIMILARITY_ALIGN META_FASTER META_FASTER
self_adapt.yaml Self-adaptive attention for FSOD IDENTITY_NO_REPEAT GRU IDENTITY
dynamic.yaml Dynamic relevance learning IDENTITY INTERPOLATE DYNAMIC_R
dana.yaml Dual Awarness Attention for FSOD CISA BGA HADAMARD

The path to the AAF config file should be specified inside the master config file (i.e. for the whole network) under FEWSHOT.AAF.CFG.

For each module, classes implementing the available choices are regrouped under a single file: /modelling/aaf/alignment.py, /modelling/aaf/attention.py and /modelling/aaf/fusion.py.

Spatial Alignment

Spatial Alignment reorganizes spatially the features of one feature map to match another one. The idea is to align similar features in both maps so that comparison is easier.

Name Description
IDENTITY Repeats the feature to match BNCHW and NBCHW dimensions
IDENTITY_NO_REPEAT Identity without repetition
SIMILARITY_ALIGN Compute similarity matrix between support and query and align support to query accordingly.
CISA CISA block from this method

### Global Attention Global Attention highlights some features of a map accordingly to an attention vector computed globally on another one. The idea is to leverage global and hopefully semantic information.

Name Description
IDENTITY Simply pass features to next modules.
REWEIGHTING Reweights query features using globally pooled vectors from support.
REWEIGHTING_BATCH Same as above but support examples are the same for the whole batch.
SELF_ATTENTION Same as above but attention vectors are computed from the alignment matrix between query and support.
BGA BGA blocks from this method
META_FASTER Attention block from this method
POOLING Pools query and support features to the same size.
INTERPOLATE Upsamples support features to match query size.
GRU Computes attention vectors through a graph representation using a GRU.

Fusion Layer

Combine directly the features from support and query. These maps must be of the same dimension for point-wise operation. Hence fusion is often employed along with alignment.

Name Description
IDENTITY Returns onlu adapted query features.
ADD Point-wise sum between query and support features.
HADAMARD Point-wise multiplication between query and support features.
SUBSTRACT Point-wise substraction between query and support features.
CONCAT Channel concatenation of query and support features.
META_FASTER Fusion layer from this method
DYNAMIC_R Fusion layer from this method

Training and evaluation

Training and evaluation scripts are available.

TODO: Give code snippet to run training with a specified config file (modify main) Basically create 2 scripts train.py and eval.py with arg config file.

DataHandler

Explain DataHandler class a bit.

Installation

Dependencies used for this projects can be installed through conda create --name <env> --file requirements.txt. Please note that these requirements are not all necessary and it will be updated soon.

FCOS must be installed from sources. But there might be some issue after installation depending on the version of the python packages you use.

  • cpu/vision.h file not found: replace all occurences in the FCOS source by vision.h (see this issue).
  • Error related to AT_CHECK with pytorch > 1.5 : replace all occurences by TORCH_CHECK (see this issue.
  • Error related to torch._six.PY36: replace all occurence of PY36 by PY37.

Results

Results on pascal VOC, COCO and DOTA.

Owner
Pierre Le Jeune
PhD Student in Few-shot object detection.
Pierre Le Jeune
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022