A script and GUI for controlling stepper motors from an arduino

Overview

Controlling-Stepper-Motors-with-Arduino-NEMA-

A python script and GUI for controlling 3 stepper motors in 3 directions (X, Y, Z) from an arduino (I was using nema 23 but it should work for others in general, maybe with some small changes).

I used an Arduino uno with usb connection, using pyfirmata to control it from python, the arduino pins (details below) were fed into 3 DM542 microstep drivers (powered with 24 V power supplies), and the outputs from the drivers were connected to the NEMA23 stepper motors through 3x custom (5-pin) XLR cables (using 4 of the connections).

For X, Y and Z directions I set up the pins as follows (but you can change it easily in the code) X direction pin - 3 pulse pin - 2 enable pin - 12 Y direction pin - 5 pulse pin - 4 enable pin - 11 Z direction pin - 7 pulse pin - 6 enable pin - 10

brief explanation of the pin type functions: direction - high (5V) or low (0V) depending on whether you want to drive forwards or backwards pulse - pulses between high and low, the driver will then interpret this (depending on the driver settings) as e.g. 400 pulses need to rotate the stepper drive one full rotation. So if this pin goes high to low 400 times your driver will rotate 360 degrees in this example. enable pin - when high this will block the driver from taking action when recieving pulses. In the end I didn't experience much push back so I left this low all the time but you can edit to set it high and then only low when the move loop is activated if you experience unwanted movement.

The GUI is quite basic, made using tkinter. I recommend first time you run it putting x,y and z in your e.g. 0 positions and saving those positions as 0. Note #1 that they can go to negative values. Note #2 that z is set up in cm and running backwards (ie higher up is a lower value) because this is how my physical z drive was set up, but changing that should be fairly straight forward! Here you can either set a position for x/y/z (or all 3) and start the system moving there. The positions text will update once they arrive in position. You can also set a jog size and then move either x y or z in those steps. There's a stop button in case of emergencies. If you hit stop the positions text will update to the position they reached when you hit stop. There's also the buttons 'set safe place' - the system will the current position, and if you later hit 'go to safe place' it will move there. Note that the system will always move first in x, then y, and last z. If you want to change the order just switch the order x y and z are checked and acted on at line 255 in the def movebutton. You can also set the speed in the GUI between fast, medium and slow, this just changes the sleep time between pulses sent to the drivers. You can change them easily. If fast is still not fast enough then decrease you drivers pulses per revolution settings if possible.

There are a few places in the code where you will need to set things specific to your setup (the COM port of the arduino, the arduino pins used, driver and thread settings, and the file directory for storing positions between uses if you want this). Elaborating on that last point, line 76, set a path to a folder you created called XYZ log. This will save the current XYZ positions (in a text file) if you close the GUI and load the most recent when you open the GUI.

I usually ran the script from a batch file on the desktop so that noone would accidentally edit the code (.bat file example included too). For this to work for you change the first "" contents to your python path and the second to the script path.

I'll upload some photos of the setup and a wiring diagram. I hope this is useful for someone else that is sick of trying to get labview to do what they want. Happy stepping!

Owner
Pip
PhD in physics from the University of Manchester, using python to make life easier and for fun projects.
Pip
This allows you to record keyboard and mouse input, and play it back using pynput.

Record and Play with Python! This allows you to record keyboard and mouse input, and play it back (with looping) using pynput. It allows for automatio

George Jensen 45 Jan 02, 2023
Imbalaced Classification and Robust Semantic Segmentation

Imbalaced Classification and Robust Semantic Segmentation This repo implements two algoritms. The imbalance clibration (IC) algorithm for image classi

24 Jul 23, 2022
Adafruit IO connected smart thermostat based on CircuitPython.

Adafruit IO Thermostat Adafruit IO connected smart thermostat based on CircuitPython. Background and Motivation I have a 24 V Heat-only system with a

Shubham Chaudhary 1 Jan 18, 2022
hardware design of the 250mm drone

hardware design of the 250mm drone

ZJU FAST Lab 645 Dec 25, 2022
Better support for Nuki devices to the Home Assistant

Another attempt to add a better support for Nuki devices to the Home Assistant Features: Lock interface implementation Uses local webhook from bridge

Konstantin 105 Jan 07, 2023
LedFx is a network based LED effect controller with support for advanced real-time audio effects

Welcome to LedFx ✨ -Making music come alive! LedFx website: https://ledfx.app/ What is LedFx? What LedFx offers is the ability to take audio input, an

786 Jan 02, 2023
🏡 My Home Assistant Configs. Be sure to 🌟 my repo to follow the updates!

Home Assistant Configuration Here's my Home Assistant configuration. I have installed HA on a Lenovo ThinkCentre M93P Tiny with an Intel Dual-Core i5-

iLyas Bakouch 25 Dec 30, 2022
Pure micropython ESP32 SPI driver for sdcard and screen at the same SPI bus

micropython-esp32-spi-sdcard-and-screen-driver Proof of concept of Pure micropython espidf SPI driver for sdcard with screen at the same SPI bus (exam

Thomas Favennec 7 Mar 14, 2022
A circle of LEDs

This repository contains all the design files, production files and example code for a simple circular LED display.

Pim de Groot 15 Aug 21, 2022
What if home automation was homoiconic? Just transformations of data? No more YAML!

radiale what if home-automation was also homoiconic? The upper or proximal row contains three bones, to which Gegenbaur has applied the terms radiale,

Felix Barbalet 21 Mar 26, 2022
MPY tool - manage files on devices running MicroPython

mpytool MPY tool - manage files on devices running MicroPython It is an alternative to ampy Target of this project is to make more clean code, faster,

Pavel Revak 5 Aug 17, 2022
This is a Virtual Keyboard which is simple yet effective to use.

Virtual-Keyboard This is a Virtual KeyBoard which can track finger movements and lets you type anywhere ranging from notepad to even web browsers. It

Jehan Patel 3 Oct 01, 2021
Drobo Status is a python program that will connect to your Drobo and return JSON data regarding your Drobo

This is a simple python script that will run a docker container to pull data from Drobo. It will give information like (Name, serial, firmware, disk-total, disk-used, disk-free and individual disk st

Biofects 1 Jan 15, 2022
Code for the onshape macropad.

Onshape_Macropad Code for the onshape macropad. This is a macropad built using the Pimoroni Keybow and the KPrepublic Enclosure. pimoroni_keybow kprep

Justin Cole 1 Nov 23, 2021
Python Wrapper for Homeassistant's REST API

HomeassistantAPI Python Wrapper for Homeassistant's REST API Please ⭐️ the repo if you find this project useful or cool! Here is a quick example. from

Nate 29 Dec 31, 2022
Raspberry Pi & Accelerometer with Losant's EEA

Raspberry Pi & Accelerometer with Losant's EEA This is a repository that contains companion code to this EEA How To guide. Each folder is named accord

Losant 1 Oct 29, 2021
Various programs in Atari BASIC for #FujiNet for Atari 8-bit

FujiNet Various programs in Atari BASIC for #FujiNet for Atari 8-bit FujiNet-3D Tic Tac Toe In 1978, Scott Adams wrote a 3-D Tic Tac Toe game, for pla

Kay Savetz 2 Jan 01, 2022
Iec62056-21-mqtt - Publish DSMR P1 telegrams acquired over IEC62056-21 to MQTT

IEC 62056-21 Publish DSMR P1 telegrams acquired over IEC62056-21 to MQTT. -21 is

Marijn Suijten 1 Jun 05, 2022
This tool emulates an EMV-CAP device, to illustrate the article "Banque en ligne : à la decouverte d'EMV-CAP" published in MISC

About This tool emulates an EMV-CAP device, to illustrate the article "Banque en ligne : à la decouverte d'EMV-CAP" published in MISC, issue #56 and f

Philippe Teuwen 28 Nov 21, 2022
Python code written to utilize the Korlan usb2can hardware to send and receive data over the can-bus on a 2008 Nissan 350z

nissan_ecu_hacking Python code written to utilize the Korlan usb2can hardware to send and receive data over the can-bus on a 2008 Nissan 350z My goal

Liam Goss 11 Sep 24, 2022