Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Overview

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive"

This repository contains demo programs for the Talking Head Anime from a Single Image 2: More Expressive project. Similar to the previous version, it has two programs:

  • The manual_poser lets you manipulate the facial expression and the head rotation of an anime character, given in a single image, through a graphical user interface. The poser is available in two forms: a standard GUI application, and a Jupyter notebook.
  • The ifacialmocap_puppeteer lets you transfer your facial motion, captured by a commercial iOS application called iFacialMocap, to an image of an anime character.

Try the Manual Poser on Google Colab

If you do not have the required hardware (discussed below) or do not want to download the code and set up an environment to run it, click this link to try running the manual poser on Google Colab.

Hardware Requirements

Both programs require a recent and powerful Nvidia GPU to run. I could personally ran them at good speed with the Nvidia Titan RTX. However, I think recent high-end gaming GPUs such as the RTX 2080, the RTX 3080, or better would do just as well.

The ifacialmocap_puppeteer requires an iOS device that is capable of computing blend shape parameters from a video feed. This means that the device must be able to run iOS 11.0 or higher and must have a TrueDepth front-facing camera. (See this page for more info.) In other words, if you have the iPhone X or something better, you should be all set. Personally, I have used an iPhone 12 mini.

Software Requirements

Both programs were written in Python 3. To run the GUIs, the following software packages are required:

  • Python >= 3.8
  • PyTorch >= 1.7.1 with CUDA support
  • SciPY >= 1.6.0
  • wxPython >= 4.1.1
  • Matplotlib >= 3.3.4

In particular, I created the environment to run the programs with Anaconda, using the following commands:

> conda create -n talking-head-anime-2-demo python=3.8
> conda activate talking-head-anime-2-demo
> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
> conda install scipy
> pip install wxPython
> conda install matplotlib

To run the Jupyter notebook version of the manual_poser, you also need:

  • Jupyter Notebook >= 6.2.0
  • IPyWidgets >= 7.6.3

This means that, in addition to the commands above, you also need to run:

> conda install -c conda-forge notebook
> conda install -c conda-forge ipywidgets
> jupyter nbextension enable --py widgetsnbextension

Lastly, the ifacialmocap_puppeteer requires iFacialMocap, which is available in the App Store for 980 yen. You also need to install the paired desktop application on your PC or Mac. (Linux users, I'm sorry!) Your iOS and your computer must also use the same network. (For example, you may connect them to the same wireless router.)

Automatic Environment Construction with Anaconda

You can also use Anaconda to download and install all Python packages in one command. Open your shell, change the directory to where you clone the repository, and run:

conda env create -f environment.yml

This will create an environment called talking-head-anime-2-demo containing all the required Python packages.

Download the Model

Before running the programs, you need to download the model files from this Dropbox link and unzip it to the data folder of the repository's directory. In the end, the data folder should look like:

+ data
  + illust
    - waifu_00.png
    - waifu_01.png
    - waifu_02.png
    - waifu_03.png
    - waifu_04.png
    - waifu_05.png
    - waifu_06.png
    - waifu_06_buggy.png
  - combiner.pt
  - eyebrow_decomposer.pt
  - eyebrow_morphing_combiner.pt
  - face_morpher.pt
  - two_algo_face_rotator.pt

The model files are distributed with the Creative Commons Attribution 4.0 International License, which means that you can use them for commercial purposes. However, if you distribute them, you must, among other things, say that I am the creator.

Running the manual_poser Desktop Application

Open a shell. Change your working directory to the repository's root directory. Then, run:

> python tha2/app/manual_poser.py

Note that before running the command above, you might have to activate the Python environment that contains the required packages. If you created an environment using Anaconda as was discussed above, you need to run

> conda activate talking-head-anime-2-demo

if you have not already activated the environment.

Running the manual_poser Jupyter Notebook

Open a shell. Activate the environment. Change your working directory to the repository's root directory. Then, run:

> jupyter notebook

A browser window should open. In it, open tha2.ipynb. Once you have done so, you should see that it only has one cell. Run it. Then, scroll down to the end of the document, and you'll see the GUI there.

Running the ifacialmocap_puppeteer

First, run iFacialMocap on your iOS device. It should show you the device's IP address. Jot it down. Keep the app open.

IP address in iFacialMocap screen

Then, run the companion desktop application.

iFaciaMocap desktop application

Click "Open Advanced Setting >>". The application should expand.

Click the 'Open Advanced Setting >>' button.

Click the button that says "Maya" on the right side.

Click the 'Maya' button.

Then, click "Blender."

Select 'Blender' mode in the desktop application

Next, replace the IP address on the left side with your iOS device's IP address.

Replace IP address with device's IP address.

Click "Connect to Blender."

Click 'Connect to Blender.'

Open a shell. Activate the environment. Change your working directory to the repository's root directory. Then, run:

> python tha2/app/ifacialmocap_puppeteer.py

If the programs are connected properly, you should see that the many progress bars at the bottom of the ifacialmocap_puppeteer window should move when you move your face in front of the iOS device's front-facing camera.

You should see the progress bars moving.

If all is well, load an character image, and it should follow your facial movement.

Constraints on Input Images

In order for the model to work well, the input image must obey the following constraints:

  • It must be of size 256 x 256.
  • It must be of PNG format.
  • It must have an alpha channel.
  • It must contain only one humanoid anime character.
  • The character must be looking straight ahead.
  • The head of the character should be roughly contained in the middle 128 x 128 box.
  • All pixels that do not belong to the character (i.e., background pixels) should have RGBA = (0,0,0,0).

Image specification

FAQ: I prepared an image just like you said, why is my output so ugly?!?

This is most likely because your image does not obey the "background RGBA = (0,0,0,0)" constraint. In other words, your background pixels are (RRR,GGG,BBB,0) for some RRR, GGG, BBB > 0 rather than (0,0,0,0). This happens when you use Photoshop because it does not clear the RGB channels of transparent pixels.

Let's see an example. When I tried to use the manual_poser with data/illust/waifu_06_buggy.png. Here's what I got.

A failure case

When you look at the image, there seems to be nothing wrong with it.

waifu_06_buggy.png

However, if you inspect it with GIMP, you will see that the RGB channels have what backgrounds, which means that those pixels have non-zero RGB values.

In the buggy image, background pixels have colors in the RGB channels.

What you want, instead, is something like the non-buggy version: data/illust/waifu_06.png, which looks exactly the same as the buggy one to the naked eyes.

waifu_06.png

However, in GIMP, all channels have black backgrounds.

In the good image, background pixels do not have colors in any channels.

Because of this, the output was clean.

A success case

A way to make sure that your image works well with the model is to prepare it with GIMP. When exporting your image to the PNG format, make sure to uncheck "Save color values from transparent pixels" before you hit "Export."

Make sure to uncheck 'Save color values from transparent pixels' before exporting!

Disclaimer

While the author is an employee of Google Japan, this software is not Google's product and is not supported by Google.

The copyright of this software belongs to me as I have requested it using the IARC process. However, Google might claim the rights to the intellectual property of this invention.

The code is released under the MIT license. The model is released under the Creative Commons Attribution 4.0 International License.

Owner
Pramook Khungurn
A software developer from Thailand, interested in computer graphics, machine learning, and algorithms.
Pramook Khungurn
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
Creating a Feed of MISP Events from ThreatFox (by abuse.ch)

ThreatFox2Misp Creating a Feed of MISP Events from ThreatFox (by abuse.ch) What will it do? This will fetch IOCs from ThreatFox by Abuse.ch, convert t

17 Nov 22, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
This is a NLP based project to extract effective date of the contract from their text files.

Date-Extraction-from-Contracts This is a NLP based project to extract effective date of the contract from their text files. Problem statement This is

Sambhav Garg 1 Jan 26, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech

TFPNER TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech Named entity recognition (NER), which aims at identifyin

1 Feb 07, 2022
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.

ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia

Facebook Research 9.7k Jan 09, 2023
基于百度的语音识别,用python实现,pyaudio+pyqt

Speech-recognition 基于百度的语音识别,python3.8(conda)+pyaudio+pyqt+baidu-aip 百度有面向python

J-L 1 Jan 03, 2022
BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Table of contents Introduction Using BARTpho with fairseq Using BARTpho with transformers Notes BARTpho: Pre-trained Sequence-to-Sequence Models for V

VinAI Research 58 Dec 23, 2022
Python package for performing Entity and Text Matching using Deep Learning.

DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util

461 Dec 28, 2022
Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021