Evaluation of a Monocular Eye Tracking Set-Up

Overview

Evaluation of a Monocular Eye Tracking Set-Up

As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Chen et al..
For 9 calibration samples, the previous state-of-the-art performance can be improved by up to 5.44% (2.553 degrees compared to 2.7 degrees) and for 128 calibration samples, by 7% (2.418 degrees compared to 2.6 degrees). This is accomplished by (a) improving the extraction of eye features, (b) refining the fusion process of these features, (c) removing erroneous data from the MPIIFaceGaze dataset during training, and (d) optimizing the calibration method.

A software to collect own gaze data and the full gaze tracking pipeline is also available.

Results of the different models.

For the citaitions [1] - [10] please see below. "own model 1" represents the model described in the section below. "own model 2" uses the same model architecture as "own model 1" but is trained without the erroneous data, see MPIIFaceGaze section below. "own model 3" is the same as "own model 2" but with the calibrations points organized in a $\sqrt{k}\times\sqrt{k}$ grid instead of randomly on the screen.

Model

Since the feature extractors share the same weights for both eyes, it has been shown experimentally that the feature extraction process can be improved by flipping one of the eye images so that the noses of all eye images are on the same side. The main reason for this is that the images of the two eyes are more similar this way and the feature extractor can focus more on the relevant features, rather than the unimportant features, of either the left or the right eye.

The architectural improvement that has had the most impact is the improved feature fusion process of left and right eye features. Instead of simply combining the two features, they are combined using Squeeze-and-Excitation (SE) blocks. This introduces a control mechanism for the channel relationships of the extracted feature maps that the model can learn serially.

Start training by running python train.py --path_to_data=./data --validate_on_person=1 --test_on_person=0. For pretrained models, please see evaluation section.

Data

While examining and analyzing the most commonly used gaze prediction dataset, MPIIFaceGaze a subset of MPIIGaze, in detail. It was realized that some recorded data does not match the provided screen sizes. For participant 2, 7, and 10, 0.043%, 8.79%, and 0.39% of the gazes directed at the screen did not match the screen provided, respectively. The left figure below shows recorded points in the datasets that do not match the provided screen size. These false target gaze positions are also visible in the right figure below, where the gaze point that are not on the screen have a different yaw offset to the ground truth.

Results of the MPIIFaceGaze analysis

To the best of our knowledge, we are the first to address this problem of this widespread dataset, and we propose to remove all days with any errors for people 2, 7, and 10, resulting in a new dataset we call MPIIFaceGaze-. This would only reduce the dataset by about 3.2%. As shown in the first figure, see "own model 2", removing these erroneous data improves the model's overall performance.

For preprocessing MPIIFaceGaze, download the original dataset and then run python dataset/mpii_face_gaze_preprocessing.py --input_path=./MPIIFaceGaze --output_path=./data. Or download the preprocessed dataset.

To only generate the CSV files with all filenames which gaze is not on the screen, run python dataset/mpii_face_gaze_errors.py --input_path=./MPIIFaceGaze --output_path=./data. This can be run on MPIIGaze and MPIIFaceGaze, or the CSV files can be directly downloaded for MPIIGaze and MPIIFaceGaze.

Calibration

Nine calibration samples has become the norm for the comparison of different model architectures using MPIIFaceGaze. When the calibration points are organized in a $\sqrt{k}\times\sqrt{k}$ grid instead of randomly on the screen, or all in one position, the resulting person-specific calibration is more accurate. The three different ways to distribute the calibration point are compared in the figure below, also see "own model 3" in the first figure. Nine calibration samples aligned in a grid result in a lower angular error than 9 randomly positioned calibration samples.

To collect your own calibration data or dataset, please refer to gaze data collection.

Comparison of the position of the calibration samples.

Evaluation

For evaluation, the trained models are evaluated on the full MPIIFaceGaze, including the erroneous data, for a fair comparison to other approaches. Download the pretrained "own model 2" models and run python eval.py --path_to_checkpoints=./pretrained_models --path_to_data=./data to reproduce the results shown in the figure above and the table below. --grid_calibration_samples=True takes a long time to evaluate, for the ease of use the number of calibration runs is reduced to 500.

random calibration
k=9
random calibration
k=128
grid calibration
k=9
grid calibration
k=128

k=all
p00 1.780 1.676 1.760 1.674 1.668
p01 1.899 1.777 1.893 1.769 1.767
p02 1.910 1.790 1.875 1.787 1.780
p03 2.924 2.729 2.929 2.712 2.714
p04 2.355 2.239 2.346 2.229 2.229
p05 1.836 1.720 1.826 1.721 1.711
p06 2.569 2.464 2.596 2.460 2.455
p07 3.823 3.599 3.737 3.562 3.582
p08 3.778 3.508 3.637 3.501 3.484
p09 2.695 2.528 2.667 2.526 2.515
p10 3.241 3.126 3.199 3.105 3.118
p11 2.668 2.535 2.667 2.536 2.524
p12 2.204 1.877 2.131 1.882 1.848
p13 2.914 2.753 2.859 2.754 2.741
p14 2.161 2.010 2.172 2.052 1.998
mean 2.584 2.422 2.553 2.418 2.409

Bibliography

[1] Zhaokang Chen and Bertram E. Shi, “Appearance-based gaze estimation using dilated-convolutions”, Lecture Notes in Computer Science, vol. 11366, C. V. Jawahar, Hongdong Li, Greg Mori, and Konrad Schindler, Eds., pp. 309–324, 2018. DOI: 10.1007/978-3-030-20876-9_20. [Online]. Available: https://doi.org/10.1007/978-3-030-20876-9_20.
[2] ——, “Offset calibration for appearance-based gaze estimation via gaze decomposition”, in IEEE Winter Conference on Applications of Computer Vision, WACV 2020, Snowmass Village, CO, USA, March 1-5, 2020, IEEE, 2020, pp. 259–268. DOI: 10.1109/WACV45572.2020.9093419. [Online]. Available: https://doi.org/10.1109/WACV45572.2020.9093419.
[3] Tobias Fischer, Hyung Jin Chang, and Yiannis Demiris, “RT-GENE: real-time eye gaze estimation in natural environments”, in Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part X, Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, Eds., ser. Lecture Notes in Computer Science, vol. 11214, Springer, 2018, pp. 339–357. DOI: 10.1007/978-3-030-01249-6_21. [Online]. Available: https://doi.org/10.1007/978-3-030-01249-6_21.
[4] Erik Lindén, Jonas Sjöstrand, and Alexandre Proutière, “Learning to personalize in appearance-based gaze tracking”, pp. 1140–1148, 2019. DOI: 10.1109/ICCVW.2019.00145. [Online]. Available: https://doi.org/10.1109/ICCVW.2019.00145.
[5] Gang Liu, Yu Yu, Kenneth Alberto Funes Mora, and Jean-Marc Odobez, “A differential approach for gaze estimation with calibration”, in British Machine Vision Conference 2018, BMVC 2018, Newcastle, UK, September 3-6, 2018, BMVA Press, 2018, p. 235. [Online]. Available: http://bmvc2018.org/contents/papers/0792.pdf.
[6] Seonwook Park, Shalini De Mello, Pavlo Molchanov, Umar Iqbal, Otmar Hilliges, and Jan Kautz, “Few-shot adaptive gaze estimation”, pp. 9367–9376, 2019. DOI: 10.1109/ICCV.2019.00946. [Online]. Available: https://doi.org/10.1109/ICCV.2019.00946.
[7] Seonwook Park, Xucong Zhang, Andreas Bulling, and Otmar Hilliges, “Learning to find eye region landmarks for remote gaze estimation in unconstrained settings”, Bonita Sharif and Krzysztof Krejtz, Eds., 21:1–21:10, 2018. DOI: 10.1145/3204493.3204545. [Online]. Available: https://doi.org/10.1145/3204493.3204545.
[8] Yu Yu, Gang Liu, and Jean-Marc Odobez, “Improving few-shot user-specific gaze adaptation via gaze redirection synthesis”, pp. 11 937–11 946, 2019. DOI: 10.1109/CVPR.2019.01221. [Online]. Available: http://openaccess.thecvf.com/content_CVPR_2019/html/Yu_Improving_Few-Shot_User-Specific_Gaze_Adaptation_via_Gaze_Redirection_Synthesis_CVPR_2019_paper.html.
[9] Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling, “It’s written all over your face: Full-face appearance-based gaze estimation”, pp. 2299–2308, 2017. DOI: 10.1109/CVPRW.2017.284. [Online]. Available: https://doi.org/10.1109/CVPRW.2017.284
[10] ——, “Mpiigaze: Real-world dataset and deep appearance-based gaze estimation”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 1, pp. 162–175, 2019. DOI: 10.1109/TPAMI.2017.2778103. [Online]. Available: https://doi.org/10.1109/TPAMI.2017.2778103. \

Owner
Pascal
Pascal
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 03, 2022
Wafer Fault Detection - Wafer circleci with python

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

Avnish Yadav 14 Nov 21, 2022
A forecasting system dedicated to smart city data

smart-city-predictions System prognostyczny dedykowany dla danych inteligentnych miast Praca inżynierska realizowana przez Michała Stawikowskiego and

Kevin Lai 1 Nov 08, 2021
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
Convert tables stored as images to an usable .csv file

Convert an image of numbers to a .csv file This Python program aims to convert images of array numbers to corresponding .csv files. It uses OpenCV for

711 Dec 26, 2022
CubingB is a timer/analyzer for speedsolving Rubik's cubes, with smart cube support

CubingB is a timer/analyzer for speedsolving Rubik's cubes (and related puzzles). It focuses on supporting "smart cubes" (i.e. bluetooth cubes) for recording the exact moves of a solve in real time.

Zach Wegner 5 Sep 18, 2022
Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather

Tuplex 791 Jan 04, 2023
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022
ASTR 302: Python for Astronomy (Winter '22)

ASTR 302, Winter 2022, University of Washington: Python for Astronomy Mario Jurić Location When: 2:30-3:50, Monday & Wednesday, Winter quarter 2022 Wh

UW ASTR 302: Python for Astronomy 4 Jan 12, 2022
Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles

Correlation-Study-Climate-Change-EV-Adoption Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles I

Jonathan Feng 1 Jan 03, 2022
BErt-like Neurophysiological Data Representation

BENDR BErt-like Neurophysiological Data Representation This repository contains the source code for reproducing, or extending the BERT-like self-super

114 Dec 23, 2022
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).

This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and lo

Coiled 102 Nov 10, 2022
Python utility to extract differences between two pandas dataframes.

Python utility to extract differences between two pandas dataframes.

Jaime Valero 8 Jan 07, 2023
A CLI tool to reduce the friction between data scientists by reducing git conflicts removing notebook metadata and gracefully resolving git conflicts.

databooks is a package for reducing the friction data scientists while using Jupyter notebooks, by reducing the number of git conflicts between different notebooks and assisting in the resolution of

dataroots 86 Dec 25, 2022
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
Gathering data of likes on Tinder within the past 7 days

tinder_likes_data Gathering data of Likes Sent on Tinder within the past 7 days. Versions November 25th, 2021 - Functionality to get the name and age

Alex Carter 12 Jan 05, 2023