Precision Medicine Knowledge Graph (PrimeKG)

Overview

PrimeKG


website GitHub Repo stars GitHub Repo forks License: MIT

Website | bioRxiv Paper | Harvard Dataverse

Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integrates 20 high-quality biomedical resources to describe 17,080 diseases with 4,050,249 relationships representing ten major biological scales, considerably expanding previous efforts in disease-rooted knowledge graphs. We accompany PrimeKG’s graph structure with text descriptions of clinical guidelines for drugs and diseases to enable multimodal analyses.

Updates

Unique Features of PrimeKG

  • Diverse coverage of diseases: PrimeKG contains over 17,000 diseases including rare dieases. Disease nodes in PrimeKG are densely connected to other nodes in the graph and have been optimized for clinical relevance in downstream precision medicine tasks.
  • Heterogeneous knowledge graph: PrimeKG contains over 100,000 nodes distributed over various biological scales as depicted below. PrimeKG also contains over 4 million relationships between these nodes distributed over 29 types of edges.
  • Multimodal integration of clinical knowledge: Disease and drug nodes in PrimeKG are augmented with clinical descriptors that come from medical authorities such as Mayo Clinic, Orphanet, Drug Bank, and so forth.
  • Ready-to-use datasets: PrimeKG is minimally dependent on external packages. Our knowledge graph can be retrieved in a ready-to-use format from Harvard Dataverse.
  • Data functions: PrimeKG provides extensive data functions, including processors for primary resources and scripts to build an updated knowledge graph.

overview

PrimeKG-example

Environment setup

Using pip

To install the dependencies required to run the PrimeKG code, use pip:

pip install -r requirements.txt

Or use conda

conda env create --name PrimeKG --file=environments.yml

Building an updated PrimeKG

Downloading primary data resources

All persistent identifiers and weblinks to download the 20 primary data resources used to build PrimeKG are systematically provided in the Data Records section of our article. We have also mentioned the exact filenames that were downloaded from each resource for easy corroboration.

Curating primary data resources

We provide the scripts used to process all primary data resources and the names of the resulting output files generated by those scripts. We would be happy to share the intermediate processing datasets that were used to create PrimeKG on request.

Database Processing scripts Expected script output
Bgee bgee.py anatomy_gene.csv
Comparative Toxicogenomics Database ctd.py exposure_data.csv
DisGeNET - curated_gene_disease_associations.tsv
DrugBank drugbank_drug_drug.py drug_drug.csv
DrugBank parsexml_drugbank.ipynb, Parsed_feature.ipynb 12 drug feature files
DrugBank drugbank_drug_protein.py drug_protein.csv
Drug Central drugcentral_queries.txt drug_disease.csv
Drug Central drugcentral_feature.Rmd dc_features.csv
Entrez Gene ncbigene.py protein_go_associations.csv
Gene Ontology go.py go_terms_info.csv, go_terms_relations.csv
Human Phenotype Ontology hpo.py, hpo_obo_parser.py hp_terms.csv, hp_parents.csv, hp_references.csv
Human Phenotype Ontology hpoa.py disease_phenotype_pos.csv, disease_phenotype_neg.csv
MONDO mondo.py, mondo_obo_parser.py mondo_terms.csv, mondo_parents.csv, mondo_references.csv, mondo_subsets.csv, mondo_definitions.csv
Reactome reactome.py reactome_ncbi.csv, reactome_terms.csv, reactome_relations.csv
SIDER sider.py sider.csv
UBERON uberon.py uberon_terms.csv, uberon_rels.csv, uberon_is_a.csv
UMLS umls.py, map_umls_mondo.py umls_mondo.csv
UMLS umls.ipynb umls_def_disorder_2021.csv, umls_def_disease_2021.csv

Harmonizing datasets into PrimeKG

The code to harmonize datasets and construct PrimeKG is available at build_graph.ipynb. Simply run this jupyter notebook in order to construct the knowledge graph form the outputs of the processing files mentioned above. This jupyter notebook produces all three versions of PrimeKG, kg_raw.csv, kg_giant.csv, and the complete version kg.csv.

Feature extraction

The code required to engineer features can be found at engineer_features.ipynb and mapping_mayo.ipynb.

Cite Us

If you find PrimeKG useful, cite our work:

@article{chandak2022building,
  title={Building a knowledge graph to enable precision medicine},
  author={Chandak, Payal and Huang, Kexin and Zitnik, Marinka},
  journal={bioRxiv},
  doi={10.1101/2022.05.01.489928},
  URL={https://www.biorxiv.org/content/early/2022/05/01/2022.05.01.489928},
  year={2022}
}

Data Server

PrimeKG is hosted on Harvard Dataverse with the following persistent identifier https://doi.org/10.7910/DVN/IXA7BM. When Dataverse is under maintenance, PrimeKG datasets cannot be retrieved. That happens rarely; please check the status on the Dataverse website.

License

PrimeKG codebase is under MIT license. For individual dataset usage, please refer to the dataset license found in the website.

Owner
Machine Learning for Medicine and Science @ Harvard
Machine Learning for Medicine and Science @ Harvard
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

MedMCQA MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering A large-scale, Multiple-Choice Question Answe

MedMCQA 24 Nov 30, 2022
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)

ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril

Ryuichi Yamamoto 189 Dec 29, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
【原神】自动演奏风物之诗琴的程序

疯物之诗琴 读取midi并自动演奏原神风物之诗琴。 可以自定义配置文件自动调整音符来适配风物之诗琴。 (原神1.4直播那天就开始做了!到现在才能放出来。。) 如何使用 在Release页面中下载打包好的程序和midi压缩包并解压。 双击运行“疯物之诗琴.exe”。 在原神中打开风物之诗琴,软件内输入

435 Jan 04, 2023
pyMorfologik MorfologikpyMorfologik - Python binding for Morfologik.

Python binding for Morfologik Morfologik is Polish morphological analyzer. For more information see http://github.com/morfologik/morfologik-stemming/

Damian Mirecki 18 Dec 29, 2021
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.

TRICE: a task-agnostic transferring framework for multi-source sequence generation This is the source code of our work Transfer Learning for Sequence

THUNLP-MT 9 Jun 27, 2022
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
Random-Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Random Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short links

Mohammed Rabil 1 Jan 01, 2022
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Yale-LILY 213 Jan 04, 2023
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정한 코드입니다.

KoBERTopic 모델 소개 KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정했습니다. 기존 BERTopic : https://github.com/MaartenGr/BERTopic/tree/05a6790b21009d

Won Joon Yoo 26 Jan 03, 2023
🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
A repo for materials relating to the tutorial of CS-332 NLP

CS-332-NLP A repo for materials relating to the tutorial of CS-332 NLP Contents Tutorial 1: Introduction Corpus Regular expression Tokenization Tutori

Alok singh 9 Feb 15, 2022
Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation

Diego 1 Mar 20, 2022
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
Adversarial Examples for Extreme Multilabel Text Classification

Adversarial Examples for Extreme Multilabel Text Classification The code is adapted from the source codes of BERT-ATTACK [1], APLC_XLNet [2], and Atte

1 May 14, 2022