project page for VinVL

Related tags

Deep LearningVinVL
Overview

VinVL: Revisiting Visual Representations in Vision-Language Models

Updates

02/28/2021: Project page built.

Introduction

This repository is the project page for VinVL, containing necessary instructions to reproduce the results presented in the paper. We presents a detailed study of improving visual representations for vision language (VL) tasks and develops an improved object detection model to provide object-centric representations of images. Compared to the most widely used bottom-up and top-down model (code), the new model is bigger, better-designed for VL tasks, and pre-trained on much larger training corpora that combine multiple public annotated object detection datasets. Therefore, it can generate representations of a richer collection of visual objects and concepts. While previous VL research focuses mainly on improving the vision-language fusion model and leaves the object detection model improvement untouched, we show that visual features matter significantly in VL models. In our experiments we feed the visual features generated by the new object detection model into a Transformer-based VL fusion model OSCAR (code), and utilize an improved approach to pre-train the VL model and fine-tune it on a wide range of downstream VL tasks. Our results show that the new visual features significantly improve the performance across all VL tasks, creating new state-of-the-art results on seven public benchmarks.

Performance

Task t2i t2i i2t i2t IC IC IC IC NoCaps NoCaps VQA NLVR2 GQA
Metric [email protected] [email protected] [email protected] [email protected] [email protected] M C S C S test-std test-P test-std
SoTA_S 39.2 68.0 56.6 84.5 38.9 29.2 129.8 22.4 61.5 9.2 70.92 58.80 63.17
SoTA_B 54.0 80.8 70.0 91.1 40.5 29.7 137.6 22.8 86.58 12.38 73.67 79.30 61.62
SoTA_L 57.5 82.8 73.5 92.2 41.7 30.6 140.0 24.5 - - 74.93 81.47 -
----- --- --- --- --- --- --- --- --- --- --- --- --- ---
VinVL_B 58.1 83.2 74.6 92.6 40.9 30.9 140.6 25.1 92.46 13.07 76.12 83.08 64.65
VinVL_L 58.8 83.5 75.4 92.9 41.0 31.1 140.9 25.2 - - 76.62 83.98 -
gain 1.3 0.7 1.9 0.6 -0.7 0.5 0.9 0.7 5.9 0.7 1.69 2.51 1.48

t2i: text-to-image retrieval; i2t: image-to-text retrieval; IC: image captioning on COCO.

Leaderboard results

VinVL has achieved top-position in several VL leaderboards, including Visual Question Answering (VQA), Microsoft COOC Image Captioning, Novel Object Captioning (nocaps), and Visual Commonsense Reasoning (VCR).

Comparison with image features from bottom-up and top-down model (code).

We observe uniform improvements on seven VL tasks by replacing visual features from bottom-up and top-down model with ours. The NoCaps baseline is from VIVO, and our results are obtained by directly replacing the visual features. The baselines for rest tasks are from OSCAR, and our results are obtained by replacing the visual features and performing OSCAR+ pre-training. All models are BERT-Base size. As analyzed in Section 5.2 in the VinVL paper, the new visual features contributes 95% of the improvement.

Task t2i t2i i2t i2t IC IC IC IC NoCaps NoCaps VQA NLVR2 GQA
metric [email protected] [email protected] [email protected] [email protected] [email protected] M C S C S test-std test-P test-std
bottom-up and top-down model 54.0 80.8 70.0 91.1 40.5 29.7 137.6 22.8 86.58 12.38 73.16 78.07 61.62
VinVL (ours) 58.1 83.2 74.6 92.6 40.9 30.9 140.6 25.1 92.46 13.07 75.95 83.08 64.65
gain 4.1 2.4 4.6 1.5 0.4 1.2 3.0 2.3 5.9 0.7 2.79 4.71 3.03

Please see the following two figures for visual comparison.

Source code

Pretrained Faster-RCNN model and feature extraction

The pretrained X152-C4 object-attribute detection can be downloaded here. With code from our Scene Graph Benchmark Repo (to be released soon), one can extract features with following command:

python tools/test_sg_net.py --config-file sgg_configs/vgattr/vinvl_x152c4.yaml TEST.IMS_PER_BATCH 2 MODEL.WEIGHT models/vinvl/vinvl_vg_x152c4.pth MODEL.ROI_HEADS.NMS_FILTER 1 MODEL.ROI_HEADS.SCORE_THRESH 0.2 DATA_DIR "../maskrcnn-benchmark-1/datasets1" TEST.IGNORE_BOX_REGRESSION True MODEL.ATTRIBUTE_ON True TEST.OUTPUT_FEATURE True

The output feature will be encoded as base64.

Find more pretrained models in DOWNLOAD.

Pre-exacted Image Features

For ease-of-use, we make pretrained features and predictions available for all pretraining datasets and downstream tasks. Please find the instructions to download them in DOWNLOAD.

Pretraind Oscar+ models and VL downstream tasks

The code to produce all vision-language results (both pretraining and downstream task finetuning) can be found in our OSCAR repo. One can find the model zoo for vision-language tasks here.

Citations

Please consider citing this paper if you use the code:

@article{li2020oscar,
  title={Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks},
  author={Li, Xiujun and Yin, Xi and Li, Chunyuan and Hu, Xiaowei and Zhang, Pengchuan and Zhang, Lei and Wang, Lijuan and Hu, Houdong and Dong, Li and Wei, Furu and Choi, Yejin and Gao, Jianfeng},
  journal={ECCV 2020},
  year={2020}
}

@article{zhang2021vinvl,
  title={VinVL: Making Visual Representations Matter in Vision-Language Models},
  author={Zhang, Pengchuan and Li, Xiujun and Hu, Xiaowei and Yang, Jianwei and Zhang, Lei and Wang, Lijuan and Choi, Yejin and Gao, Jianfeng},
  journal={CVPR 2021},
  year={2021}
}
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022