Deep Inertial Prediction (DIPr)

Related tags

Deep Learningdipr
Overview

Deep Inertial Prediction

For more information and context related to this repo, please refer to our website.

Getting Started (non Docker)

Note: you will need to have pytorch installed (tested with 1.8 and higher)

python3 -m venv <venv_path>
source <venv_path>/bin/activate

git clone https://github.com/arcturus-industries/dipr.git && cd dipr
pip3 install -e .
python3 dipr/evaluate.py --challenge_folder <data_path>

Getting Started (with Docker)

You will need docker and realpath commands to be installed

git clone https://github.com/arcturus-industries/dipr.git && cd dipr
# on x86_64 systems
./build-and-run.sh <data_path>
# on arm64 systems (like mac M1)
./build-and-run-aarch64.sh <data_path>

M1 Mac note: You can use either the X86_64 container or the arm64 container. If you use the x86_64 container, you may see "Could not initialize NNPACK! Reason: Unsupported hardware." This is only a warning. It will however take a long time to run (about 30 minutes or longer after the docker build finishes)

Package Content

  • dataset.py - sample API to read the challenge hdf5 dataset format
  • cnn_backend.py - a file with CNN inference backends (currenly only TorchScript is supported). If you plan to work on a DL inference framework other than TorchScript, implement it there
  • noise_utils.py - a file with noise calibration and parameters, you may adjust them to generate your own noise levels
  • imu_fallback.py - a sample implmentation of ImuFallback with CNN velocity measurements
  • utils.py - auxiliary tools
  • evaluate.py - sample test script that runs ImuFallback on available datasets and outputs Mean Absolute Velocity metric

Running sample evaluation script

python3 evaluate.py --challenge_folder <data_path>

or for the docker versions

# on x86_64 systems
./build-and-run.sh <data_path>
# on arm64 systems (like mac M1)
./build-and-run-aarch64.sh <data_path>

It will output something like:

python3.9 evaluate.py -df shared
Dataset OpenVR_2021-09-02_17-40-34-synthetic, segments durations [7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0 ] sec
Processing datasets: 100%|██████████| 1/1 [05:04<00:00, 304.92s/files]
all_vel_mae_cnn 2.12cm/s
all_vel_mae_fallback 9.73cm/s
all_pose_mae_fallback 15.51cm

Which mean it found OpenVR_2021-09-02_17-40-34-synthetic test dataset, and executed ImuFallback on 13 segments of duration 7 seconds, and estimated over them averaged Mean Absolute Velocity Error as 9.73cm/s

It also outputs image with tracking plots to <challenge_folder_root>/_results/<datasetname>.png. There are plots for IMU only tracking, ImuFallback + CNN traking and ground truth

Challenge folder Content

train_synthetic - a folder with train datasets, available after sign-up https://dipr.ai/sign-up

test_synthetic - a folder where evaluation script looks for test datasets (we share only one example dataset)

_results - a folder where evaluation script stores some results

pretrained - an example CNN model we ship

Known Issues

Installing dependencies natively on Apple Silicon may fail with the following:

> pip3 install -e .
...
    error: Command "clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -iwithsysroot/System/Library/Frameworks/System.framework/PrivateHeaders -iwithsysroot/Applications/Xcode.app/Contents/Developer/Library/Frameworks/Python3.framework/Versions/3.8/Headers -arch arm64 -arch x86_64 -Werror=implicit-function-declaration -ftrapping-math -DNPY_INTERNAL_BUILD=1 -DHAVE_NPY_CONFIG_H=1 -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE=1 -D_LARGEFILE64_SOURCE=1 -DNO_ATLAS_INFO=3 -DHAVE_CBLAS -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/common -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/umath -Inumpy/core/include -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/include/numpy -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/distutils/include -Inumpy/core/src/common -Inumpy/core/src -Inumpy/core -Inumpy/core/src/npymath -Inumpy/core/src/multiarray -Inumpy/core/src/umath -Inumpy/core/src/npysort -Inumpy/core/src/_simd -I<venv_path>/include -I/Applications/Xcode.app/Contents/Developer/Library/Frameworks/Python3.framework/Versions/3.8/include/python3.8 -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/common -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/npymath -c numpy/core/src/multiarray/dragon4.c -o build/temp.macosx-10.14-x86_64-3.8/numpy/core/src/multiarray/dragon4.o -MMD -MF build/temp.macosx-10.14-x86_64-3.8/numpy/core/src/multiarray/dragon4.o.d -msse3 -I/System/Library/Frameworks/vecLib.framework/Headers" failed with exit status 1
    ----------------------------------------
    ERROR: Failed building wheel for numpy

Workaround: use the Docker instructions

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
Arcturus Industries
Arcturus Industries
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023