Recovering Brain Structure Network Using Functional Connectivity

Overview

Recovering-Brain-Structure-Network-Using-Functional-Connectivity

Framework:

framework

Papers:

This repository provides a PyTorch implementation of the models adopted in the two papers:

  • Zhang, Lu, Li Wang, and Dajiang Zhu. "Recovering brain structural connectivity from functional connectivity via multi-gcn based generative adversarial network." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2020.
  • Zhang, Lu, Li Wang, and Dajiang Zhu. "Predicting Brain Structure Network using Functional Connectivity." in process.

The first paper proposes the Multi-GCN GAN model and structure preserving loss, and the second paper further expands the research on different datasets, different atlases, different functional connectivity generation methods, different models, and new evaluation measures. New results have been obtained.

Code:

dataloader.py

This file includes the preprocessing and normalization operations of the data. All the details have been introduced in the two papers. The only element needs to pay attention to is the empty list, which records the ids of the empty ROIs of specific atlases. For example, there are two brain regions in Destrieux Atlas are empty (Medial_wall for both left and right hemispheres). Therefore the corresponding two rows and columns in the generated SC and FC are zeros. We deleted these rows and columns.

model.py

We implemented different models in this file, including two different CNN-based generators, Multi-GCN-based generator and GCN-based discriminator. Different models can be chosen by directly calling the corresponding classes when run the train.py file. Different model architectures are as follows:

  • CNN (CNN-based generator, MSE loss and PCC loss)
  • Multi-GCN (Multi-GCN-based generator, MSE loss and PCC loss)
  • CNN based GAN (CNN-based generator and GCN-based discriminator, SP loss)
  • MGCN-GAN (Multi-GCN-based generator and GCN-based discriminator, SP loss)

When adopting the proposed MGCN-GAN architecture, the different topology updating methods and differnet initializations of learnable combination coefficients of multiple GCNs (theta) can be directly changed in this file, and we have annotated in this file about how to change them. For Linear regression model, we directly called the LinearRegression from sklearn.linear_model package.

Loss_custom.py

The proposed SP loss includes three components: GAN loss, MSE loss and PCC loss. In this file, we implemented the PCC loss. For the MSE loss and GAN loss, we directly called the loss functions from torch.nn module in train.py file. By directly editing train.py file, different loss functions can be chosen, including:

  • GAN Loss
  • MSE+GAN loss
  • PCC+GAN loss
  • SP loss

train.py

You need to run this file to start. All the hyper-parameters can be defined in this file.

Run python ./train.py -atlas='atlas1' -gpu_id=1.

Tested with:

  • PyTorch 1.9.0
  • Python 3.7.0

Data:

We used 1064 subjects from HCP dataset and 132 subjects from ADNI dataset in our research. For each subject, we generated the structural connectivity (SC) and the functional connectivity (FC) matrices. All of the connectivity matrices can be shared for research purpose. Please contact the author to get the data by sending email to [email protected].

Citation:

If you used the code or data of this project, please cite:

@inproceedings{zhang2020recovering,
  title={Recovering brain structural connectivity from functional connectivity via multi-gcn based generative adversarial network},
  author={Zhang, Lu and Wang, Li and Zhu, Dajiang},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={53--61},
  year={2020},
  organization={Springer}
}
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)

MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M

Xin Liu 106 Dec 30, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022