Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Overview

Noisy Natural Gradient as Variational Inference

PyTorch implementation of Noisy Natural Gradient as Variational Inference.

Requirements

  • Python 3
  • Pytorch
  • visdom

Comments

  • This paper is about how to optimize bayesian neural network which has matrix variate gaussian distribution.
  • This implementation contains Noisy Adam optimizer which is for Fully Factorized Gaussian(FFG) distribution, and Noisy KFAC optimizer which is for Matrix Variate Gaussian(MVG) distribution.
  • These optimizers only work with bayesian network which has specific structure that I will mention below.
  • Currently only linear layer is available.

Experimental comments

  • I addded a lr scheduler to noisy KFAC because loss is exploded during training. I guess this happens because of slight approximation.
  • For MNIST training noisy KFAC is 15-20x slower than noisy Adam, as mentioned in paper.
  • I guess the noisy KFAC needs more epochs to train simple neural network structure like 2 linear layers.

Usage

Currently only MNIST dataset are currently supported, and only fully connected layer is implemented.

Options

  • model : Fully Factorized Gaussian(FFG) or Matrix Variate Gaussian(MVG)
  • n : total train dataset size. need this value for optimizer.
  • eps : parameter for optimizer. Default to 1e-8.
  • initial_size : initial input tensor size. Default to 784, size of MNIST data.
  • label_size : label size. Default to 10, size of MNIST label.

More details in option_parser.py

Train

$ python train.py --model=FFG --batch_size=100 --lr=1e-3 --dataset=MNIST
$ python train.py --model=MVG --batch_size=100 --lr=1e-2 --dataset=MNIST --n=60000

Visualize

  • To visualize intermediate results and loss plots, run python -m visdom.server and go to the URL http://localhost:8097

Test

$ python test.py --epoch=20

Training Graphs

1. MNIST

  • network is consist of 2 linear layers.
  • FFG optimized by noisy Adam : epoch 20, lr 1e-3

  • MVG optimized by noisy KFAC : epoch 100, lr 1e-2, decay 0.1 for every 30 epochs
  • Need to tune learning rate.

Implementation detail

  • Optimizing parameter procedure is consists of 2 steps, Calculating gradient and Applying to bayeisan parameters.
  • Before forward, network samples parameters with means & variances.
  • Usually calling step function updates parameters, but not this case. After calling step function, you have to update bayesian parameters. Look at the ffg_model.py

TODOs

  • More benchmark cases
  • Supports bayesian convolution
  • Implement Block Tridiagonal Covariance, which is dependent between layers.

Code reference

Visualization code(visualizer.py, utils.py) references to pytorch-CycleGAN-and-pix2pix(https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) by Jun-Yan Zhu

Author

Tony Kim

Owner
Tony JiHyun Kim
CEO/Tech Lead @PostAlpine Co., Ltd.
Tony JiHyun Kim
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022