Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Overview

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

This repository contains the source code for the paper (link will be posted).

Requirements

  • GPU
  • Python 3
  • PyTorch 1.9
    • Earlier version may work, but untested.
  • pip install -r requirements.txt
  • If running ResNet-21 or ImageNet experiments, first download and prepare the ImageNet 2012 dataset with bin/imagenet_prep.sh script.

Running

For non-ImageNet experiments, the main python file is main.py. To see its arguments:

python main.py --help

Running for the first time can take a little longer due to automatic downloading of the MNIST and Cifar-10 dataset from the Internet.

For ImageNet experiments, the main python files are main_imagenet_float.py and main_imagenet_binary.py. Too see their arguments:

python main_imagenet_float.py --help

and

python main_imagenet_binary.py --help

The ImageNet dataset must be already downloaded and prepared. Please see the requirements section for details.

Scripts

The main python file has many options. The following scripts runs training with hyper-parameters given in the paper. Output includes a run-log text file and tensorboard files. These files are saved to ./logs and reused for subsequent runs.

300-100-10

Sensitivity Pre-training

# Layer 1. Learning rate 0.1.
./scripts/mnist/300/sensitivity/layer.sh sensitivity forward 0.1 0
# Layer 2. Learning rate 0.1.
./scripts/mnist/300/sensitivity/layer.sh sensitivity 231 0.1 0
# Layer 3. Learning rate 0.1.
./scripts/mnist/300/sensitivity/layer.sh sensitivity reverse 0.1 0

Output files and run-log are written to ./logs/mnist/val/sensitivity/.

Hyperparam search

For floating-point training:

# Learning rate 0.1.
./scripts/mnist/300/val/float.sh hyperparam 0.1 0

For full binary training:

# Learning rate 0.1.
./scripts/mnist/300/val/binary.sh hyperparam 0.1 0

For iterative training:

# Forward order. Learning rate 0.1.
./scripts/mnist/300/val/layer.sh hyperparam forward 0.1 0
# Reverse order. Learning rate 0.1.
./scripts/mnist/300/val/layer.sh hyperparam reverse 0.1 0
# 1, 3, 2 order. Learning rate 0.1.
./scripts/mnist/300/val/layer.sh hyperparam 132 0.1 0
# 2, 1, 3 order. Learning rate 0.1.
./scripts/mnist/300/val/layer.sh hyperparam 213 0.1 0
# 2, 3, 1 order. Learning rate 0.1.
./scripts/mnist/300/val/layer.sh hyperparam 231 0.1 0
# 3, 1, 2 order. Learning rate 0.1.
./scripts/mnist/300/val/layer.sh hyperparam 312 0.1 0

Output files and run-log are written to ./logs/mnist/val/hyperparam/.

Full Training

For floating-point training:

# Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/float.sh full 0.1 316 0

For full binary training:

# Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/binary.sh full 0.1 316 0

For iterative training:

# Forward order. Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/layer.sh full forward 0.1 316 0
# Reverse order. Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/layer.sh full reverse 0.1 316 0
# 1, 3, 2 order. Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/layer.sh full 132 0.1 316 0
# 2, 1, 3 order. Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/layer.sh full 213 0.1 316 0
# 2, 3, 1 order. Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/layer.sh full 231 0.1 316 0
# 3, 1, 2 order. Learning rate 0.1. Seed 316.
./scripts/mnist/300/run/layer.sh full 312 0.1 316 0

Output files and run-log are written to ./logs/mnist/run/full/.

784-100-10

Sensitivity Pre-training

# Layer 1. Learning rate 0.1.
./scripts/mnist/784/sensitivity/layer.sh sensitivity forward 0.1 0
# Layer 2. Learning rate 0.1.
./scripts/mnist/784/sensitivity/layer.sh sensitivity 231 0.1 0
# Layer 3. Learning rate 0.1.
./scripts/mnist/784/sensitivity/layer.sh sensitivity reverse 0.1 0

Output files and run-log are written to ./logs/mnist/val/sensitivity/.

Hyperparam search

For floating-point training:

# Learning rate 0.1.
./scripts/mnist/784/val/float.sh hyperparam 0.1 0

For full binary training:

# Learning rate 0.1.
./scripts/mnist/784/val/binary.sh hyperparam 0.1 0

For iterative training:

# Forward order. Learning rate 0.1.
./scripts/mnist/784/val/layer.sh hyperparam forward 0.1 0
# Reverse order. Learning rate 0.1.
./scripts/mnist/784/val/layer.sh hyperparam reverse 0.1 0
# 1, 3, 2 order. Learning rate 0.1.
./scripts/mnist/784/val/layer.sh hyperparam 132 0.1 0
# 2, 1, 3 order. Learning rate 0.1.
./scripts/mnist/784/val/layer.sh hyperparam 213 0.1 0
# 2, 3, 1 order. Learning rate 0.1.
./scripts/mnist/784/val/layer.sh hyperparam 231 0.1 0
# 3, 1, 2 order. Learning rate 0.1.
./scripts/mnist/784/val/layer.sh hyperparam 312 0.1 0

Output files and run-log are written to ./logs/mnist/val/hyperparam/.

Full Training

For floating-point training:

# Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/float.sh full 0.1 316 0

For full binary training:

# Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/binary.sh full 0.1 316 0

For iterative training:

# Forward order. Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/layer.sh full forward 0.1 316 0
# Reverse order. Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/layer.sh full reverse 0.1 316 0
# 1, 3, 2 order. Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/layer.sh full 132 0.1 316 0
# 2, 1, 3 order. Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/layer.sh full 213 0.1 316 0
# 2, 3, 1 order. Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/layer.sh full 231 0.1 316 0
# 3, 1, 2 order. Learning rate 0.1. Seed 316.
./scripts/mnist/784/run/layer.sh full 312 0.1 316 0

Output files and run-log are written to ./logs/mnist/run/full/.

Vgg-5

Sensitivity Pre-training

# Layer 1. Learning rate 0.1.
./scripts/cifar10/vgg5/sensitivity/layer.sh sensitivity 1 0.1 0
# Layer 2. Learning rate 0.1.
./scripts/cifar10/vgg5/sensitivity/layer.sh sensitivity 2 0.1 0
# Layer 5. Learning rate 0.1.
./scripts/cifar10/vgg5/sensitivity/layer.sh sensitivity 5 0.1 0

Output files and run-log are written to ./logs/cifar10/val/sensitivity/.

Hyperparam Search

For floating-point training:

# Learning rate 0.1.
./scripts/cifar10/vgg5/val/float.sh hyperparam 0.1 0

For full binary training:

# Learning rate 0.1.
./scripts/cifar10/vgg5/val/binary.sh hyperparam 0.1 0

For iterative training:

# Forward order. Learning rate 0.1.
./scripts/cifar10/vgg5/val/layer.sh hyperparam forward 0.1 0
# Ascend order. Learning rate 0.1.
./scripts/cifar10/vgg5/val/layer.sh hyperparam ascend 0.1 0
# Reverse order. Learning rate 0.1.
./scripts/cifar10/vgg5/val/layer.sh hyperparam reverse 0.1 0
# Descend order. Learning rate 0.1.
./scripts/cifar10/vgg5/val/layer.sh hyperparam descend 0.1 0
# Random order. Learning rate 0.1.
./scripts/cifar10/vgg5/val/layer.sh hyperparam random 0.1 0

Output files and run-log are written to ./logs/cifar10/val/hyperparam/.

Full Training

For floating-point training:

# Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/float.sh full 0.1 316 0

For full binary training:

# Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/binary.sh full 0.1 316 0

For iterative training:

# Forward order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/layer.sh full forward 0.1 316 0
# Ascend order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/layer.sh full ascend 0.1 316 0
# Reverse order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/layer.sh full reverse 0.1 316 0
# Descend order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/layer.sh full descend 0.1 316 0
# Random order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg5/run/layer.sh full random 0.1 316 0

Output files and run-log are written to ./logs/cifar10/run/full/.

Vgg-9

Sensitivity Pre-training

# Layer 1. Learning rate 0.1.
./scripts/cifar10/vgg9/sensitivity/layer.sh sensitivity 1 0.1 0
# Layer 2. Learning rate 0.1.
./scripts/cifar10/vgg9/sensitivity/layer.sh sensitivity 2 0.1 0
# Layer 5. Learning rate 0.1.
./scripts/cifar10/vgg9/sensitivity/layer.sh sensitivity 5 0.1 0

Output files and run-log are written to ./logs/cifar10/val/sensitivity/.

Hyperparam Search

For floating-point training:

# Learning rate 0.1.
./scripts/cifar10/vgg9/val/float.sh hyperparam 0.1 0

For full binary training:

# Learning rate 0.1.
./scripts/cifar10/vgg9/val/binary.sh hyperparam 0.1 0

For iterative training:

# Forward order. Learning rate 0.1.
./scripts/cifar10/vgg9/val/layer.sh hyperparam forward 0.1 0
# Ascend order. Learning rate 0.1.
./scripts/cifar10/vgg9/val/layer.sh hyperparam ascend 0.1 0
# Reverse order. Learning rate 0.1.
./scripts/cifar10/vgg9/val/layer.sh hyperparam reverse 0.1 0
# Descend order. Learning rate 0.1.
./scripts/cifar10/vgg9/val/layer.sh hyperparam descend 0.1 0
# Random order. Learning rate 0.1.
./scripts/cifar10/vgg9/val/layer.sh hyperparam random 0.1 0

Output files and run-log are written to ./logs/cifar10/val/hyperparam/.

Full Training

For floating-point training:

# Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/float.sh full 0.1 316 0

For full binary training:

# Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/binary.sh full 0.1 316 0

For iterative training:

# Forward order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/layer.sh full forward 0.1 316 0
# Ascend order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/layer.sh full ascend 0.1 316 0
# Reverse order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/layer.sh full reverse 0.1 316 0
# Descend order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/layer.sh full descend 0.1 316 0
# Random order. Learning rate 0.1. Seed 316.
./scripts/cifar10/vgg9/run/layer.sh full random 0.1 316 0

Output files and run-log are written to ./logs/cifar10/run/full/.

ResNet-20

Sensitivity Pre-training

# Layer 1. Learning rate 0.1.
./scripts/cifar10/resnet20/sensitivity/layer.sh sensitivity 1 0.1 0
# Layer 2. Learning rate 0.1.
./scripts/cifar10/resnet20/sensitivity/layer.sh sensitivity 2 0.1 0
# ...
# Layer 20. Learning rate 0.1.
./scripts/cifar10/resnet20/sensitivity/layer.sh sensitivity 20 0.1 0

Output files and run-log are written to ./logs/cifar10/val/sensitivity/.

Hyperparam Search

For floating-point training:

# Learning rate 0.1
./scripts/cifar10/resnet20/val/float.sh hyperparam 0.1 0

For full binary training:

# Learning rate 0.1
./scripts/cifar10/resnet20/val/binary.sh hyperparam 0.1 0

For iterative training:

# Forward order. Learning rate 0.1
./scripts/cifar10/resnet20/val/layer.sh hyperparam forward 0.1 0
# Ascend order. Learning rate 0.1
./scripts/cifar10/resnet20/val/layer.sh hyperparam ascend 0.1 0
# Reverse order. Learning rate 0.1
./scripts/cifar10/resnet20/val/layer.sh hyperparam reverse 0.1 0
# Descend order. Learning rate 0.1
./scripts/cifar10/resnet20/val/layer.sh hyperparam descend 0.1 0
# Random order. Learning rate 0.1
./scripts/cifar10/resnet20/val/layer.sh hyperparam random 0.1 0

Output files and run-log are written to ./logs/cifar10/val/hyperparam/.

Full Training

For floating-point training:

# Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/float.sh full 0.1 316 0

For full binary training:

# Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/binary.sh full 0.1 316 0

For iterative training:

# Forward order. Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/layer.sh full forward 0.1 316 0
# Ascend order. Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/layer.sh full ascend 0.1 316 0
# Reverse order. Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/layer.sh full reverse 0.1 316 0
# Descend order. Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/layer.sh full descend 0.1 316 0
# Random order. Learning rate 0.1. Seed 316.
./scripts/cifar10/resnet20/run/layer.sh full random 0.1 316 0

Output files and run-log are written to ./logs/cifar10/run/full/.

ResNet-21

To run experiments for ResNet-21, first download and prepare the ImageNet dataset. See the requirements section at the beginning of this readme. We assume the dataset is prepared and is at ./imagenet.

Sensitivity Pre-training

# Layer 1. Learning rate 0.01.
./scripts/imagenet/layer.sh sensitivity ./imagenet 20 "[20]" 20 1 0.01
# Layer 2. Learning rate 0.01.
./scripts/imagenet/layer.sh sensitivity ./imagenet 20 "[20]" 20 2 0.01
# Layer 21. Learning rate 0.01.
./scripts/imagenet/layer.sh sensitivity ./imagenet 20 "[20]" 20 21 0.01

Output files and run-log are written to ./logs/imagenet/sensitivity/.

Full Training

For floating-point training:

# Learning rate 0.01.
./scripts/imagenet/float.sh full ./imagenet 67 "[42,57]" 0.01

For full binary training:

# Learning rate 0.01.
./scripts/imagenet/binary.sh full ./imagenet 67 "[42,57]" 0.01

For layer-by-layer training:

# Forward order
./scripts/imagenet/layer.sh full ./imagenet 67 "[42,57]" 2 forward 0.01
# Ascending order
./scripts/imagenet/layer.sh full ./imagenet 67 "[42,57]" 2 ascend 0.01

For all scripts, output files and run-log are written to ./logs/imagenet/full/.

License

See LICENSE

Contributing

See the contributing guide for details of how to participate in development of the module.

Owner
Rakuten Group, Inc.
Rakuten Group, Inc.
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022