Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Related tags

Deep LearningWorktory
Overview

Welcome to Worktory's documentation!

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

As the network automation ecosystem grows, several connection plugins and parsers are available, and several times choosing a library or a connection plugin restricts all the devices to the same connection method.

Worktory tries to solve that problem giving the developer total flexibility for choosing the connector plugin and parsers for each device, at the same time that exposes a single interface for every plugin.

Installing

Worktory is available in PyPI, to install run:

$ pip install worktory

Using worktory

Sample Inventory

devices = [
            {
            'name': 'sandbox-iosxr-1',
            'hostname': 'sandbox-iosxr-1.cisco.com',
            'platform': 'cisco_iosxr',
            'username': 'admin',
            'password': 'C1sco12345',
            'groups': ['CORE'],
            'connection_manager': 'scrapli',
            'select_parsers' : 'genie',
            'mode': 'async',
            'transport': 'asyncssh',
            },
            {
            'name': 'sandbox-nxos-1',
            'hostname': 'sandbox-nxos-1.cisco.com',
            'platform': 'cisco_nxos',
            'username': 'admin',
            'password': 'Admin_1234!',
            'groups': ['CORE'],
            'select_parsers' : 'ntc',
            'connection_manager': 'scrapli',
            'mode': 'async',
            'transport': 'asyncssh'
            },
            {
            'name': 'sandbox-nxos-2',
            'hostname': 'sandbox-nxos-1.cisco.com',
            'platform': 'nxos',
            'username': 'admin',
            'password': 'Admin_1234!',
            'groups': ['EDGE'],
            'connection_manager': 'unicon',
            'mode': 'sync',
            'transport': 'ssh',
            'GRACEFUL_DISCONNECT_WAIT_SEC': 0,
            'POST_DISCONNECT_WAIT_SEC': 0,
            },
            {
            'name': 'sandbox-iosxr-2',
            'hostname': 'sandbox-iosxr-1.cisco.com',
            'platform': 'cisco_iosxr',
            'username': 'admin',
            'password': 'C1sco12345',
            'groups': ['CORE'],
            'connection_manager': 'scrapli',
            'select_parsers' : 'genie',
            'mode': 'sync',
            },
        ]

Collecting Running config from async devices

from worktory import InventoryManager
import asyncio
inventory = InventoryManager(devices)

device_configs = {}
async def get_config(device):
    await device.connect()
    config = await device.execute("show running-config")
    device_configs[device.name] = config
    await device.disconnect()

async def async_main():
    coros = [get_config(device) for device in inventory.filter(mode='async')]
    await asyncio.gather(*coros)

loop = asyncio.get_event_loop()
loop.run_until_complete(async_main())

Collecting Running config from sync devices

from worktory import InventoryManager
from multiprocessing import Pool
inventory = InventoryManager(devices)

def get_config(device_name):
    inventory = InventoryManager(devices)
    device = inventory.devices[device_name]
    device.connect()
    config = device.execute("show running-config")
    device.disconnect()
    return ( device.name , config )

def main():
    devs = [device.name for device in inventory.filter(mode='sync')]
    with Pool(2) as p:
        return p.map(get_config, devs)


output = main()
Owner
Renato Almeida de Oliveira
I'm a telecommunications Engineer, with experience on network engineering
Renato Almeida de Oliveira
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021