Pytorch Implementation of PointNet and PointNet++++

Overview

Pytorch Implementation of PointNet and PointNet++

This repo is implementation for PointNet and PointNet++ in pytorch.

Update

2021/03/27:

(1) Release pre-trained models for semantic segmentation, where PointNet++ can achieve 53.5% mIoU.

(2) Release pre-trained models for classification and part segmentation in log/.

2021/03/20: Update codes for classification, including:

(1) Add codes for training ModelNet10 dataset. Using setting of --num_category 10.

(2) Add codes for running on CPU only. Using setting of --use_cpu.

(3) Add codes for offline data preprocessing to accelerate training. Using setting of --process_data.

(4) Add codes for training with uniform sampling. Using setting of --use_uniform_sample.

2019/11/26:

(1) Fixed some errors in previous codes and added data augmentation tricks. Now classification by only 1024 points can achieve 92.8%!

(2) Added testing codes, including classification and segmentation, and semantic segmentation with visualization.

(3) Organized all models into ./models files for easy using.

Install

The latest codes are tested on Ubuntu 16.04, CUDA10.1, PyTorch 1.6 and Python 3.7:

conda install pytorch==1.6.0 cudatoolkit=10.1 -c pytorch

Classification (ModelNet10/40)

Data Preparation

Download alignment ModelNet here and save in data/modelnet40_normal_resampled/.

Run

You can run different modes with following codes.

  • If you want to use offline processing of data, you can use --process_data in the first run. You can download pre-processd data here and save it in data/modelnet40_normal_resampled/.
  • If you want to train on ModelNet10, you can use --num_category 10.
# ModelNet40
## Select different models in ./models 

## e.g., pointnet2_ssg without normal features
python train_classification.py --model pointnet2_cls_ssg --log_dir pointnet2_cls_ssg
python test_classification.py --log_dir pointnet2_cls_ssg

## e.g., pointnet2_ssg with normal features
python train_classification.py --model pointnet2_cls_ssg --use_normals --log_dir pointnet2_cls_ssg_normal
python test_classification.py --use_normals --log_dir pointnet2_cls_ssg_normal

## e.g., pointnet2_ssg with uniform sampling
python train_classification.py --model pointnet2_cls_ssg --use_uniform_sample --log_dir pointnet2_cls_ssg_fps
python test_classification.py --use_uniform_sample --log_dir pointnet2_cls_ssg_fps

# ModelNet10
## Similar setting like ModelNet40, just using --num_category 10

## e.g., pointnet2_ssg without normal features
python train_classification.py --model pointnet2_cls_ssg --log_dir pointnet2_cls_ssg --num_category 10
python test_classification.py --log_dir pointnet2_cls_ssg --num_category 10

Performance

Model Accuracy
PointNet (Official) 89.2
PointNet2 (Official) 91.9
PointNet (Pytorch without normal) 90.6
PointNet (Pytorch with normal) 91.4
PointNet2_SSG (Pytorch without normal) 92.2
PointNet2_SSG (Pytorch with normal) 92.4
PointNet2_MSG (Pytorch with normal) 92.8

Part Segmentation (ShapeNet)

Data Preparation

Download alignment ShapeNet here and save in data/shapenetcore_partanno_segmentation_benchmark_v0_normal/.

Run

## Check model in ./models 
## e.g., pointnet2_msg
python train_partseg.py --model pointnet2_part_seg_msg --normal --log_dir pointnet2_part_seg_msg
python test_partseg.py --normal --log_dir pointnet2_part_seg_msg

Performance

Model Inctance avg IoU Class avg IoU
PointNet (Official) 83.7 80.4
PointNet2 (Official) 85.1 81.9
PointNet (Pytorch) 84.3 81.1
PointNet2_SSG (Pytorch) 84.9 81.8
PointNet2_MSG (Pytorch) 85.4 82.5

Semantic Segmentation (S3DIS)

Data Preparation

Download 3D indoor parsing dataset (S3DIS) here and save in data/s3dis/Stanford3dDataset_v1.2_Aligned_Version/.

cd data_utils
python collect_indoor3d_data.py

Processed data will save in data/s3dis/stanford_indoor3d/.

Run

## Check model in ./models 
## e.g., pointnet2_ssg
python train_semseg.py --model pointnet2_sem_seg --test_area 5 --log_dir pointnet2_sem_seg
python test_semseg.py --log_dir pointnet2_sem_seg --test_area 5 --visual

Visualization results will save in log/sem_seg/pointnet2_sem_seg/visual/ and you can visualize these .obj file by MeshLab.

Performance

Model Overall Acc Class avg IoU Checkpoint
PointNet (Pytorch) 78.9 43.7 40.7MB
PointNet2_ssg (Pytorch) 83.0 53.5 11.2MB

Visualization

Using show3d_balls.py

## build C++ code for visualization
cd visualizer
bash build.sh 
## run one example 
python show3d_balls.py

Using MeshLab

Reference By

halimacc/pointnet3
fxia22/pointnet.pytorch
charlesq34/PointNet
charlesq34/PointNet++

Citation

If you find this repo useful in your research, please consider citing it and our other works:

@article{Pytorch_Pointnet_Pointnet2,
      Author = {Xu Yan},
      Title = {Pointnet/Pointnet++ Pytorch},
      Journal = {https://github.com/yanx27/Pointnet_Pointnet2_pytorch},
      Year = {2019}
}
@InProceedings{yan2020pointasnl,
  title={PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling},
  author={Yan, Xu and Zheng, Chaoda and Li, Zhen and Wang, Sheng and Cui, Shuguang},
  journal={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}
@InProceedings{yan2021sparse,
  title={Sparse Single Sweep LiDAR Point Cloud Segmentation via Learning Contextual Shape Priors from Scene Completion},
  author={Yan, Xu and Gao, Jiantao and Li, Jie and Zhang, Ruimao, and Li, Zhen and Huang, Rui and Cui, Shuguang},
  journal={AAAI Conference on Artificial Intelligence ({AAAI})},
  year={2021}
}

Selected Projects using This Codebase

Owner
Luigi Ariano
Luigi Ariano
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022