Make a surveillance camera from your raspberry pi!

Overview

rpi-surveillance

Make a surveillance camera from your Raspberry Pi 4!

The surveillance is built as following: the camera records 10 seconds video and if a motion was detected - sends the video to telegram channel.

The timestamp is printed on videos, so it is better to set the correct time on your Raspberry Pi.

The motion detection works in the following way: the camera’s H.264 encoder calculates motion vector estimates while generating compressed video. Using these vectors we threshold them by --magnitude-th argument. If more than --vectors-quorum vectors thresholded - mark current frame as containing motion. If there are more than --detection-frames consecutive frames with motion - motion detected.

Tested on Raspberry Pi 4 (4 RAM) + NoIR Camera V2.

Installation

Install package

Install Python 3 requirements:

pip3 install --user -r requirements.txt

Install provided .deb package:

sudo dpkg -i <path/to/downloaded/rpi-surveillance.deb>
sudo apt install -f

Note: the installation supposes that you already enabled camera module on your Raspberry Pi.

Create telegram bot and chat

  1. Write to @BotFather in telegram and create a bot:
/start
/newbot
<name of your bot>
<username of your bot>_bot

You will get the TOKEN. Save it for future use.

  1. Create a private channel where you will receive video sequences with motion.
  2. Add created bot to the channel (rerquires only "post messages" permission).
  3. Send message test to the channel.
  4. Run /usr/lib/rpi-surveillance/get_channel_id to get the CHANNEL_ID. Save it for future use.

Usage

To launch surveillance just run rpi-surveillance with your TOKEN and CHANNEL_ID, for example:

rpi-surveillance --token 1259140266:WAaqkMycra87ECzRZwa6Z_8T9KB4N-8OPI --channel-id -1003209177928

You can set various parameters of the surveillance:

usage: rpi-surveillance [-h] [--config CONFIG] --token TOKEN --channel-id
                        CHANNEL_ID [--temp-dir TEMP_DIR] [--log-file LOG_FILE]
                        [--resolution {640x480,1280x720,1920x1080}]
                        [--fps {25,30,60}] [--rotation {0,90,180,270}]
                        [--duration DURATION] [--magnitude-th MAGNITUDE_TH]
                        [--vectors-quorum VECTORS_QUORUM]
                        [--detection-frames DETECTION_FRAMES]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Path to config file.
  --token TOKEN         Token for your telegram bot.
  --channel-id CHANNEL_ID
                        Telegram channel ID. If you don't have it please, send
                        a message to your channel and run /usr/lib/rpi-
                        surveillance/get_channel_id with your token.
  --temp-dir TEMP_DIR   Path to temporary directory for video saving before
                        sending to channel. Don't change it if you don't know
                        what you're doing.
  --log-file LOG_FILE   Path to log file for logging.
  --resolution {640x480,1280x720,1920x1080}
                        Camera resolution. Default - 640x480.
  --fps {25,30,60}      Frames per second. Default - 25.
  --rotation {0,90,180,270}
                        Frame rotation. Default - 0.
  --duration DURATION   Duration of videos in seconds. Default - 10.
  --magnitude-th MAGNITUDE_TH
                        Magnitude threshold for motion detection (lower - more
                        sensitive). Defaults: for 640x480 - 15, for 1280x720 -
                        40, for 1920x1080 - 65.
  --vectors-quorum VECTORS_QUORUM
                        Vectors quorum for motion detection (lower - more
                        sensitive). Defaults: for 640x480 - 10, for 1280x720 -
                        20, for 1920x1080 - 40.
  --detection-frames DETECTION_FRAMES
                        The number of consecutive frames with detected motion
                        to send an alert.

Build

Build was done using dpkg-buildpackage.

You might also like...
Make your master artistic punk avatar through machine learning world famous paintings.
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

 Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

Releases(v2.2.2)
Owner
Vladyslav
Machine learning and computer vision developer.
Vladyslav
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022