Universal Probability Distributions with Optimal Transport and Convex Optimization

Overview

Sylvester normalizing flows for variational inference

Pytorch implementation of Sylvester normalizing flows, based on our paper:

Sylvester normalizing flows for variational inference (UAI 2018)
Rianne van den Berg*, Leonard Hasenclever*, Jakub Tomczak, Max Welling

*Equal contribution

Requirements

The latest release of the code is compatible with:

  • pytorch 1.0.0

  • python 3.7

Thanks to Martin Engelcke for adapting the code to provide this compatibility.

Version v0.3.0_2.7 is compatible with:

  • pytorch 0.3.0 WARNING: More recent versions of pytorch have different default flags for the binary cross entropy loss module: nn.BCELoss(). You have to adapt the appropriate flags if you want to port this code to a later vers
    ion.

  • python 2.7

Data

The experiments can be run on the following datasets:

  • static MNIST: dataset is in data folder;
  • OMNIGLOT: the dataset can be downloaded from link;
  • Caltech 101 Silhouettes: the dataset can be downloaded from link.
  • Frey Faces: the dataset can be downloaded from link.

Usage

Below, example commands are given for running experiments on static MNIST with different types of Sylvester normalizing flows, for 4 flows:

Orthogonal Sylvester flows
This example uses a bottleneck of size 8 (Q has 8 columns containing orthonormal vectors).

python main_experiment.py -d mnist -nf 4 --flow orthogonal --num_ortho_vecs 8 

Householder Sylvester flows
This example uses 8 Householder reflections per orthogonal matrix Q.

python main_experiment.py -d mnist -nf 4 --flow householder --num_householder 8

Triangular Sylvester flows

python main_experiment.py -d mnist -nf 4 --flow triangular 

To run an experiment with other types of normalizing flows or just with a factorized Gaussian posterior, see below.


Factorized Gaussian posterior

python main_experiment.py -d mnist --flow no_flow

Planar flows

python main_experiment.py -d mnist -nf 4 --flow planar

Inverse Autoregressive flows
This examples uses MADEs with 320 hidden units.

python main_experiment.py -d mnist -nf 4 --flow iaf --made_h_size 320

More information about additional argument options can be found by running ```python main_experiment.py -h```

Cite

Please cite our paper if you use this code in your own work:

@inproceedings{vdberg2018sylvester,
  title={Sylvester normalizing flows for variational inference},
  author={van den Berg, Rianne and Hasenclever, Leonard and Tomczak, Jakub and Welling, Max},
  booktitle={proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI)},
  year={2018}
}
Comments
  • about log_p_zk

    about log_p_zk

    Hi Rianne, This is a great code, and I have a little question about logp(zk), we hope p(zk) in VAE can be a distribution whose form is no fixed, but it seems that the calculate of logp(zk) in line81 of loss.py imply that p(zk) is a standard Gaussion. Are there some mistakes about my understanding?
    Thank your for this code

    opened by Archer666 10
  • loss = bce + beta * kl

    loss = bce + beta * kl

    hello Rianne: Thanks very much. I am a bit confused with line 44 in loss.py : loss = bce + beta * kl. Based on equation 3 in Tomczak's paper (Improving Variational Auto-Encoder Using Householder Flows), shouldn't "loss = bce - beta * kl "? Also, why use -ELBO instead of ELBO when reporting your metrics? Thanks

    opened by tumis1946 4
  • PyTorch_v1 and Python3 compatibility

    PyTorch_v1 and Python3 compatibility

    Hi Rianne,

    This PR contains a 'minimal' set of changes to run the code with the latest PyTorch versions and Python 3 ( #1 #2 )

    It is 'minimal' in the sense that I only made changes that affect functionality. There are additional cosmetic changes that could be made; e.g. Variable(), the volatile flag, and F.sigmoid() have been deprecated but they should not affect functionality.

    I tested the changes with PyTorch 1.0.0 and Python 3.7 on MNIST and Freyfaces, giving me similar results for the baseline VAE without any flows.

    I am not sure if more rigorous test should be done and if you want to merge this into master or keep a separate branch.

    Best, Martin

    opened by martinengelcke 1
  • PR for PyTorch 1.+ and Python 3 support

    PR for PyTorch 1.+ and Python 3 support

    Hi Rianne,

    Thank you for this really nice code release :)

    I cloned the repo and made some changes so that it runs with PyTorch 1.+ and Python 3. Also solved the issue mentioned in #1 . I tested the changes on MNIST (binary input) and Freyfaces (multinomial input), giving similar results to the original code.

    If you are interested in reviewing and potentially adding this to the repo, I would be happy to clean things up and make a PR.

    Best, Martin

    opened by martinengelcke 1
  • RuntimeError in default main experiment

    RuntimeError in default main experiment

    Hi Rianne,

    I'm trying to run the default experiment on cpu with a small latent space dimension (z=5):

    python main_experiment.py -d mnist --flow no_flow -nc --z_size 5

    Which unfortunately gives the following error:

    Traceback (most recent call last):
      File "main_experiment.py", line 278, in <module>
        run(args, kwargs)
      File "main_experiment.py", line 189, in run
        tr_loss = train(epoch, train_loader, model, optimizer, args)
      File ".../sylvester-flows/optimization/training.py", line 39, in train
        loss.backward()
      File "//anaconda/envs/dl/lib/python3.6/site-packages/torch/tensor.py", line 102, in backward
        torch.autograd.backward(self, gradient, retain_graph, create_graph)
      File "//anaconda/envs/dl/lib/python3.6/site-packages/torch/autograd/__init__.py", line 90, in backward
        allow_unreachable=True)  # allow_unreachable flag
    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
    

    I am using PyTorch version 1.0.0 and did not modify the code.

    opened by trdavidson 1
  • How to sample from latent distribution

    How to sample from latent distribution

    Hello,

    I was wondering how I can generate samples using the decoder network after training. In a VAE, I would just sample from the prior distribution z~N(0,1) and generate a data point using the decoder. In TriangularSylvesterVAE, however, I also have to provide hyperparameters lambda(x) that depend on the input. How can I sample from my latent distribution and generate samples from it?

    I am new to normalizing flows in general and would appreciate any help.

    opened by crlz182 2
Releases(v1.0.0_3.7)
  • v1.0.0_3.7(Jul 5, 2019)

    Sylvester Normalizing Flow repository compatible with Pytorch 1.0.0 and Python 3.7. Thanks to martinengelcke for taking care of this compatibility.

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0_2.7(Jul 5, 2019)

Owner
Rianne van den Berg
Senior researcher @Microsoft research Amsterdam. Formerly at Google Brain and University of Amsterdam
Rianne van den Berg
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022