PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Related tags

Deep LearningStoryViz
Overview

Improving Generation and Evaluation of Visual Stories via Semantic Consistency

PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency". Link to arXiv paper: https://arxiv.org/abs/2105.10026

Requirements:

This code has been tested on torch==1.7.1 and torchvision==0.8.2

Prepare Repository:

Download the PororoSV dataset and associated files from here and save it as ./data. Download GloVe embeddings (glove.840B.300D) from here. The default location of the embeddings is ./data/ (see ./dcsgan/miscc/config.py).

Training DuCo-StoryGAN:

To train DuCo-StoryGAN, first train the VideoCaptioning model on the PororoSV dataset:
python train_mart.py --data_dir
Default parameters were used to train the model used in our paper.

Next, train the generative model:
python train_gan.py --cfg ./cfg/pororo_s1_duco.yml --data_dir
If training DuCo-StoryGAN on a new dataset, make sure to train the Video Captioning model (see below) before training the GAN. The vocabulary file prepared for the video-captioning model is re-used for generating common input_ids for both models. Change location of video captioning checkpoint in config file.

Unless specified, the default output root directory for all model checkpoints is ./out/

Training Evaluation Models:

  • Video Captioning Model
    The video captioning model trained for DuCo-StoryGAN (see above) is used for evaluation. python train_mart.py --data_dir

  • Hierarchical Deep Multimodal Similarity (H-DAMSM)
    python train_damsm.py --cfg ./cfg/pororo_damsm.yml --data_dir

  • Character Classifier
    python train_classifier.py --data_dir --model_name inception --save_path ./models/inception --batch_size 8 --learning_rate 1e-05

Inference from DuCo-StoryGAN:

Use the following command to infer from trained weights for DuCo-StoryGAN:
python train_gan.py --cfg ./cfg/pororo_s1_duco_eval.yml --data_dir --checkpoint --infer_dir

Download our pretrained checkpoint from here.

Evaluation:

Download the pretrained models for evaluations:
Character Classifier, Video Captioning

Use the following command to evaluate classification accuracy of generated images:
python eval_scripts/eval_classifier.py --image_path --data_dir --model_path --model_name inception --mode

Use the following command to evaluate BLEU Score of generated images:
python eval_scripts/translate.py --batch_size 50 --pred_dir --data_dir --checkpoint_file --eval_mode

Acknowledgements

The code in this repository has been adapted from the MART, StoryGAN and MirrorGAN codebases.

Owner
Adyasha Maharana
Adyasha Maharana
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022