PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Related tags

Deep LearningStoryViz
Overview

Improving Generation and Evaluation of Visual Stories via Semantic Consistency

PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency". Link to arXiv paper: https://arxiv.org/abs/2105.10026

Requirements:

This code has been tested on torch==1.7.1 and torchvision==0.8.2

Prepare Repository:

Download the PororoSV dataset and associated files from here and save it as ./data. Download GloVe embeddings (glove.840B.300D) from here. The default location of the embeddings is ./data/ (see ./dcsgan/miscc/config.py).

Training DuCo-StoryGAN:

To train DuCo-StoryGAN, first train the VideoCaptioning model on the PororoSV dataset:
python train_mart.py --data_dir
Default parameters were used to train the model used in our paper.

Next, train the generative model:
python train_gan.py --cfg ./cfg/pororo_s1_duco.yml --data_dir
If training DuCo-StoryGAN on a new dataset, make sure to train the Video Captioning model (see below) before training the GAN. The vocabulary file prepared for the video-captioning model is re-used for generating common input_ids for both models. Change location of video captioning checkpoint in config file.

Unless specified, the default output root directory for all model checkpoints is ./out/

Training Evaluation Models:

  • Video Captioning Model
    The video captioning model trained for DuCo-StoryGAN (see above) is used for evaluation. python train_mart.py --data_dir

  • Hierarchical Deep Multimodal Similarity (H-DAMSM)
    python train_damsm.py --cfg ./cfg/pororo_damsm.yml --data_dir

  • Character Classifier
    python train_classifier.py --data_dir --model_name inception --save_path ./models/inception --batch_size 8 --learning_rate 1e-05

Inference from DuCo-StoryGAN:

Use the following command to infer from trained weights for DuCo-StoryGAN:
python train_gan.py --cfg ./cfg/pororo_s1_duco_eval.yml --data_dir --checkpoint --infer_dir

Download our pretrained checkpoint from here.

Evaluation:

Download the pretrained models for evaluations:
Character Classifier, Video Captioning

Use the following command to evaluate classification accuracy of generated images:
python eval_scripts/eval_classifier.py --image_path --data_dir --model_path --model_name inception --mode

Use the following command to evaluate BLEU Score of generated images:
python eval_scripts/translate.py --batch_size 50 --pred_dir --data_dir --checkpoint_file --eval_mode

Acknowledgements

The code in this repository has been adapted from the MART, StoryGAN and MirrorGAN codebases.

Owner
Adyasha Maharana
Adyasha Maharana
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022