Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Overview

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai)

Programming assignments from all courses in the Coursera Machine Learning Engineering for Production (MLOps) Specialization offered by deeplearning.ai.

Courses

The GAN Specialization on Coursera contains three courses:

  1. Course 1: Introduction to Machine Learning in Production

  2. Course 2: Machine Learning Data Lifecycle in Production

  3. Course 3: Machine Learning Modeling Pipelines in Production

  4. Course 4: Deploying Machine Learning Models in Production

Why this Specialization?

  • Become a Machine Learning expert. Productionize your machine learning knowledge and expand your production engineering capabilities.

  • Skills: Managing Machine Learning Production Systems, Deployment Pipelines, Model Pipelines, Data Pipelines, Machine Learning Engineering for Production, Human-level Performance (HLP), Concept Drift, Model Baseline, Project Scoping and Design, ML Deployment Challenges, ML Metadata, Convolutional Neural Network

  • Level: Advanced

    • Some knowledge of AI / deep learning
    • Intermediate skills in Python
    • Experience with any deep learning framework (PyTorch, Keras, or TensorFlow)

About this Specialization

  • Understanding machine learning and deep learning concepts is essential, but if you’re looking to build an effective AI career, you need production engineering capabilities as well.

  • Effectively deploying machine learning models requires competencies more commonly found in technical fields such as software engineering and DevOps. Machine learning engineering for production combines the foundational concepts of machine learning with the functional expertise of modern software development and engineering roles.

  • The Machine Learning Engineering for Production (MLOps) Specialization covers how to conceptualize, build, and maintain integrated systems that continuously operate in production. In striking contrast with standard machine learning modeling, production systems need to handle relentless evolving data. Moreover, the production system must run non-stop at the minimum cost while producing the maximum performance. In this Specialization, you will learn how to use well-established tools and methodologies for doing all of this effectively and efficiently.

  • In this Specialization, you will become familiar with the capabilities, challenges, and consequences of machine learning engineering in production. By the end, you will be ready to employ your new production-ready skills to participate in the development of leading-edge AI technology to solve real-world problems.

Applied Learning Project

By the end, you'll be ready to:

  • Design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment requirements
  • Establish a model baseline, address concept drift, and prototype how to develop, deploy, and continuously improve a productionized ML application
  • Build data pipelines by gathering, cleaning, and validating datasets
  • Implement feature engineering, transformation, and selection with TensorFlow Extended
  • Establish data lifecycle by leveraging data lineage and provenance metadata tools and follow data evolution with enterprise data schemas
  • Apply techniques to manage modeling resources and best serve offline/online inference requests
  • Use analytics to address model fairness, explainability issues, and mitigate bottlenecks
  • Deliver deployment pipelines for model serving that require different infrastructures
  • Apply best practices and progressive delivery techniques to maintain a continuously operating production system

Programming Assignments

Course 1: Introduction to Machine Learning in Production

Week 1

Week 2

Week 3


Course 2: Machine Learning Data Lifecycle in Production

Week 1

Week 2

Week 3

Week 4


Disclaimer

I recognize the hard time people spend on building intuition, understanding new concepts and debugging assignments. The solutions uploaded here are only for reference. They are meant to unblock you if you get stuck somewhere. Please do not copy any part of the code as-is (the programming assignments are fairly easy if you read the instructions carefully). Similarly, try out the quizzes yourself before you refer to the quiz solutions.

Owner
Aman Chadha
Tinkerer @ . AI @ Stanford.
Aman Chadha
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.

Tangram Website | Discord Tangram makes it easy for programmers to train, deploy, and monitor machine learning models. Run tangram train to train a mo

Tangram 1.4k Jan 05, 2023
Lingtrain Alignment Studio is an ML based app for texts alignment on different languages.

Lingtrain Alignment Studio Intro Lingtrain Alignment Studio is the ML based app for accurate texts alignment on different languages. Extracts parallel

Sergei Averkiev 186 Jan 03, 2023
A Time Series Library for Apache Spark

Flint: A Time Series Library for Apache Spark The ability to analyze time series data at scale is critical for the success of finance and IoT applicat

Two Sigma 970 Jan 04, 2023
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022
Coursera Machine Learning - Python code

Coursera Machine Learning This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignmen

Jordi Warmenhoven 859 Dec 10, 2022
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
Stats, linear algebra and einops for xarray

xarray-einstats Stats, linear algebra and einops for xarray ⚠️ Caution: This project is still in a very early development stage Installation To instal

ArviZ 30 Dec 28, 2022
AutoX是一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色、简单易用、通用、自动化、灵活。

English | 简体中文 AutoX是什么? AutoX一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色: AutoX在多个kaggle数据集上,效果显著优于其他解决方案(见效果对比)。 简单易用: AutoX的接口和sklearn类似,方便上手使用。

4Paradigm 431 Dec 28, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

27 Aug 19, 2022
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
Pydantic based mock data generation

This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and

Na'aman Hirschfeld 396 Dec 28, 2022
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks l

Ibotta 84 Dec 29, 2022
Uber Open Source 1.6k Dec 31, 2022