[EMNLP 2021] Improving and Simplifying Pattern Exploiting Training

Related tags

Computer VisionADAPET
Overview

ADAPET

This repository contains the official code for the paper: "Improving and Simplifying Pattern Exploiting Training".

The model improves and simplifies PET with a decoupled label objective and label-conditioned MLM objective.

Model

                       Decoupled Label Loss                                                Label Conditioned Masked Language Modelling

Updates

  • [November 2021] You can run ADAPET on your own dataset now! See instructions here

Setup

Setup environment by running source bin/init.sh. This will

  • Download the FewGLUE and SuperGLUE datasets in data/fewglue/{task} and data/superglue/{task} respectively.
  • Install and setup environment with correct dependencies.

Training

First, create a config JSON file with the necessary hyperparameters. For reference, please see config/BoolQ.json.

Then, to train the model, run the following commands:

sh bin/setup.sh
sh bin/train.sh {config_file}

The output will be in the experiment directory exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/. Once the model has been trained, the following files can be found in the directory:

exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/
    |
    |__ best_model.pt
    |__ dev_scores.json
    |__ config.json
    |__ dev_logits.npy
    |__ src

To aid reproducibility, we provide the JSON files to replicate the paper's results at config/{task_name}.json.

Evaluation

To evaluate the model on the SuperGLUE dev set, run the following command:

sh bin/dev.sh exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/

The dev scores can be found in exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/dev_scores.json.

To evaluate the model on the SuperGLUE test set, run the following command.

sh bin/test.sh exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/

The generated predictions can be found in exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/test.json.

Train your own ADAPET

  • Setup your dataset in the data folder as
data/{dataset_name}/
    |
    |__ train.jsonl
    |__ val.jsonl
    |__ test.jsonl

Each jsonl file consists of lines of dictionaries. Each dictionaries should have the following format:

{
    "TEXT1": (insert text), 
    "TEXT2": (insert text), 
    "TEXT3": (insert text), 
    ..., 
    "TEXTN": (insert text), 
    "LBL": (insert label)
}
  • Run the experiment
python cli.py --data_dir data/{dataset_name} \
              --pattern '(INSERT PATTERN)' \
              --dict_verbalizer '{"lbl_1": "verbalizer_1", "lbl_2": "verbalizer_2"}'

Here, INSERT PATTERN consists of [TEXT1], [TEXT2], [TEXT3], ..., [LBL]. For example, if the new dataset had two text inputs and one label, a sample pattern would be [TEXT1] and [TEXT2] imply [LBL].

Fine-tuned Models

Our fine-tuned models can be found in this link.

To evaluate these fine-tuned models for different tasks, run the following command:

python src/run_pretrained.py -m {finetuned_model_dir}/{task_name} -c config/{task_name}.json -k pattern={best_pattern_for_task}

The scores can be found in exp_out/fewglue/{task_name}/albert-xxlarge-v2/{timestamp}/dev_scores.json. Note: The best_pattern_for_task can be found in Table 4 of the paper.

Contact

For any doubts or questions regarding the work, please contact Derek ([email protected]) or Rakesh ([email protected]). For any bug or issues with the code, feel free to open a GitHub issue or pull request.

Citation

Please cite us if ADAPET is useful in your work:

@inproceedings{tam2021improving,
          title={Improving and Simplifying Pattern Exploiting Training},
          author={Tam, Derek and Menon, Rakesh R and Bansal, Mohit and Srivastava, Shashank and Raffel, Colin},
          journal={Empirical Methods in Natural Language Processing (EMNLP)},
          year={2021}
}
Owner
Rakesh R Menon
Rakesh R Menon
1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

SIIM-COVID19-Detection Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge. 1.INSTALLATION Ubuntu 18.04.5 LTS CUD

Nguyen Ba Dung 170 Dec 21, 2022
Detect text blocks and OCR poorly scanned PDFs in bulk. Python module available via pip.

doc2text doc2text extracts higher quality text by fixing common scan errors Developing text corpora can be a massive pain in the butt. Much of the tex

Joe Sutherland 1.3k Jan 04, 2023
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Code for CVPR 2022 paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

Bailando Code for CVPR 2022 (oral) paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory" [Paper] | [Project Page] | [Vi

Li Siyao 237 Dec 29, 2022
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022
Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight'

SSTDNet Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight' using pytorch. This code is work for general object detecti

HotaekHan 84 Jan 05, 2022

Installations for running keras-theano on GPU Upgrade pip and install opencv2 cd ~ pip install --upgrade pip pip install opencv-python Upgrade keras

Berat Kurar Barakat 14 Sep 30, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
Repository for playing the computer vision apps: People analytics on Raspberry Pi.

play-with-torch Repository for playing the computer vision apps: People analytics on Raspberry Pi. Tools Tested Hardware RasberryPi 4 Model B here, RA

eMHa 1 Sep 23, 2021
A program that takes in the hand gesture displayed by the user and translates ASL.

Interactive-ASL-Recognition Using the framework mediapipe made by google, OpenCV library and through self teaching, I was able to create a program tha

Riddhi Bajaj 3 Nov 22, 2021
Code for the ACL2021 paper "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction"

CSCBLI Code for our ACL Findings 2021 paper, "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction". Require

Jinpeng Zhang 12 Oct 08, 2022
Shape Detection - It's a shape detection project with OpenCV and Python.

Shape Detection It's a shape detection project with OpenCV and Python. Setup pip install opencv-python for doing AI things. pip install simpleaudio fo

1 Nov 26, 2022
Give a solution to recognize MaoYan font.

猫眼字体识别 该 github repo 在于帮助xjtlu的同学们识别猫眼的扭曲字体。已经打包上传至 pypi ,可以使用 pip 直接安装。 猫眼字体的识别不出来的原理与解决思路在采茶上 使用方法: import MaoYanFontRecognize

Aruix 4 Jun 30, 2022
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
A simple QR-Code Reader in Python

A simple QR-Code Reader written in Python, that copies the content of a QR-Code directly into the copy clipboard.

Eric 1 Oct 28, 2021
Solution for Problem 1 by team codesquad for AIDL 2020. Uses ML Kit for OCR and OpenCV for image processing

CodeSquad PS1 Solution for Problem Statement 1 for AIDL 2020 conducted by @unifynd technologies. Problem Given images of bills/invoices, the task was

Burhanuddin Udaipurwala 111 Nov 27, 2022
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 80 Dec 30, 2022
2 telegram-bots: for image recognition and for text generation

💻 📱 Telegram_Bots 🔎 & 📖 2 telegram-bots: for image recognition and for text generation. About Image recognition bot: User sends a photo and bot de

Marina Polukoshko 1 Jan 27, 2022
Détection de créneaux de vaccination disponibles pour l'outil ViteMaDose

Vite Ma Dose ! est un outil open source de CovidTracker permettant de détecter les rendez-vous disponibles dans votre département afin de vous faire v

CovidTracker 239 Dec 13, 2022
Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that slide and lock together.

Fusion-360-Add-In-PuzzleSpline Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that sli

Michiel van Wessem 1 Nov 15, 2021