Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Overview

Dataset Cartography

Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020.

This repository contains implementation of data maps, as well as other data selection baselines, along with notebooks for data map visualizations.

If using, please cite:

@inproceedings{swayamdipta2020dataset,
    title={Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics},
    author={Swabha Swayamdipta and Roy Schwartz and Nicholas Lourie and Yizhong Wang and Hannaneh Hajishirzi and Noah A. Smith and Yejin Choi},
    booktitle={Proceedings of EMNLP},
    url={https://arxiv.org/abs/2009.10795},
    year={2020}
}

This repository can be used to build Data Maps, like this one for SNLI using a RoBERTa-Large classifier. SNLI Data Map with RoBERTa-Large

Pre-requisites

This repository is based on the HuggingFace Transformers library.

Train GLUE-style model and compute training dynamics

To train a GLUE-style model using this repository:

python -m cartography.classification.run_glue \
    -c configs/$TASK.jsonnet \
    --do_train \
    --do_eval \
    -o $MODEL_OUTPUT_DIR

The best configurations for our experiments for each of the $TASKs (SNLI, MNLI, QNLI or WINOGRANDE) are provided under configs.

This produces a training dynamics directory $MODEL_OUTPUT_DIR/training_dynamics, see a sample here.

Note: you can use any other set up to train your model (independent of this repository) as long as you produce the dynamics_epoch_$X.jsonl for plotting data maps, and filtering different regions of the data. The .jsonl file must contain the following fields for every training instance:

  • guid : instance ID matching that in the original data file, for filtering,
  • logits_epoch_$X : logits for the training instance under epoch $X,
  • gold : index of the gold label, must match the logits array.

Plot Data Maps

To plot data maps for a trained $MODEL (e.g. RoBERTa-Large) on a given $TASK (e.g. SNLI, MNLI, QNLI or WINOGRANDE):

python -m cartography.selection.train_dy_filtering \
    --plot \
    --task_name $TASK \
    --model_dir $PATH_TO_MODEL_OUTPUT_DIR_WITH_TRAINING_DYNAMICS \
    --model $MODEL_NAME

Data Selection

To select (different amounts of) data based on various metrics from training dynamics:

python -m cartography.selection.train_dy_filtering \
    --filter \
    --task_name $TASK \
    --model_dir $PATH_TO_MODEL_OUTPUT_DIR_WITH_TRAINING_DYNAMICS \
    --metric $METRIC \
    --data_dir $PATH_TO_GLUE_DIR_WITH_ORIGINAL_DATA_IN_TSV_FORMAT

Supported $TASKs include SNLI, QNLI, MNLI and WINOGRANDE, and $METRICs include confidence, variability, correctness, forgetfulness and threshold_closeness; see paper for more details.

To select hard-to-learn instances, set $METRIC as "confidence" and for ambiguous, set $METRIC as "variability". For easy-to-learn instances: set $METRIC as "confidence" and use the flag --worst.

The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
KaziText is a tool for modelling common human errors.

KaziText KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatic

ÚFAL 3 Nov 24, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
Nicholas Lee 3 Jan 09, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023