Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Overview

Dataset Cartography

Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020.

This repository contains implementation of data maps, as well as other data selection baselines, along with notebooks for data map visualizations.

If using, please cite:

@inproceedings{swayamdipta2020dataset,
    title={Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics},
    author={Swabha Swayamdipta and Roy Schwartz and Nicholas Lourie and Yizhong Wang and Hannaneh Hajishirzi and Noah A. Smith and Yejin Choi},
    booktitle={Proceedings of EMNLP},
    url={https://arxiv.org/abs/2009.10795},
    year={2020}
}

This repository can be used to build Data Maps, like this one for SNLI using a RoBERTa-Large classifier. SNLI Data Map with RoBERTa-Large

Pre-requisites

This repository is based on the HuggingFace Transformers library.

Train GLUE-style model and compute training dynamics

To train a GLUE-style model using this repository:

python -m cartography.classification.run_glue \
    -c configs/$TASK.jsonnet \
    --do_train \
    --do_eval \
    -o $MODEL_OUTPUT_DIR

The best configurations for our experiments for each of the $TASKs (SNLI, MNLI, QNLI or WINOGRANDE) are provided under configs.

This produces a training dynamics directory $MODEL_OUTPUT_DIR/training_dynamics, see a sample here.

Note: you can use any other set up to train your model (independent of this repository) as long as you produce the dynamics_epoch_$X.jsonl for plotting data maps, and filtering different regions of the data. The .jsonl file must contain the following fields for every training instance:

  • guid : instance ID matching that in the original data file, for filtering,
  • logits_epoch_$X : logits for the training instance under epoch $X,
  • gold : index of the gold label, must match the logits array.

Plot Data Maps

To plot data maps for a trained $MODEL (e.g. RoBERTa-Large) on a given $TASK (e.g. SNLI, MNLI, QNLI or WINOGRANDE):

python -m cartography.selection.train_dy_filtering \
    --plot \
    --task_name $TASK \
    --model_dir $PATH_TO_MODEL_OUTPUT_DIR_WITH_TRAINING_DYNAMICS \
    --model $MODEL_NAME

Data Selection

To select (different amounts of) data based on various metrics from training dynamics:

python -m cartography.selection.train_dy_filtering \
    --filter \
    --task_name $TASK \
    --model_dir $PATH_TO_MODEL_OUTPUT_DIR_WITH_TRAINING_DYNAMICS \
    --metric $METRIC \
    --data_dir $PATH_TO_GLUE_DIR_WITH_ORIGINAL_DATA_IN_TSV_FORMAT

Supported $TASKs include SNLI, QNLI, MNLI and WINOGRANDE, and $METRICs include confidence, variability, correctness, forgetfulness and threshold_closeness; see paper for more details.

To select hard-to-learn instances, set $METRIC as "confidence" and for ambiguous, set $METRIC as "variability". For easy-to-learn instances: set $METRIC as "confidence" and use the flag --worst.

Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022