Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Overview

Dataset Cartography

Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020.

This repository contains implementation of data maps, as well as other data selection baselines, along with notebooks for data map visualizations.

If using, please cite:

@inproceedings{swayamdipta2020dataset,
    title={Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics},
    author={Swabha Swayamdipta and Roy Schwartz and Nicholas Lourie and Yizhong Wang and Hannaneh Hajishirzi and Noah A. Smith and Yejin Choi},
    booktitle={Proceedings of EMNLP},
    url={https://arxiv.org/abs/2009.10795},
    year={2020}
}

This repository can be used to build Data Maps, like this one for SNLI using a RoBERTa-Large classifier. SNLI Data Map with RoBERTa-Large

Pre-requisites

This repository is based on the HuggingFace Transformers library.

Train GLUE-style model and compute training dynamics

To train a GLUE-style model using this repository:

python -m cartography.classification.run_glue \
    -c configs/$TASK.jsonnet \
    --do_train \
    --do_eval \
    -o $MODEL_OUTPUT_DIR

The best configurations for our experiments for each of the $TASKs (SNLI, MNLI, QNLI or WINOGRANDE) are provided under configs.

This produces a training dynamics directory $MODEL_OUTPUT_DIR/training_dynamics, see a sample here.

Note: you can use any other set up to train your model (independent of this repository) as long as you produce the dynamics_epoch_$X.jsonl for plotting data maps, and filtering different regions of the data. The .jsonl file must contain the following fields for every training instance:

  • guid : instance ID matching that in the original data file, for filtering,
  • logits_epoch_$X : logits for the training instance under epoch $X,
  • gold : index of the gold label, must match the logits array.

Plot Data Maps

To plot data maps for a trained $MODEL (e.g. RoBERTa-Large) on a given $TASK (e.g. SNLI, MNLI, QNLI or WINOGRANDE):

python -m cartography.selection.train_dy_filtering \
    --plot \
    --task_name $TASK \
    --model_dir $PATH_TO_MODEL_OUTPUT_DIR_WITH_TRAINING_DYNAMICS \
    --model $MODEL_NAME

Data Selection

To select (different amounts of) data based on various metrics from training dynamics:

python -m cartography.selection.train_dy_filtering \
    --filter \
    --task_name $TASK \
    --model_dir $PATH_TO_MODEL_OUTPUT_DIR_WITH_TRAINING_DYNAMICS \
    --metric $METRIC \
    --data_dir $PATH_TO_GLUE_DIR_WITH_ORIGINAL_DATA_IN_TSV_FORMAT

Supported $TASKs include SNLI, QNLI, MNLI and WINOGRANDE, and $METRICs include confidence, variability, correctness, forgetfulness and threshold_closeness; see paper for more details.

To select hard-to-learn instances, set $METRIC as "confidence" and for ambiguous, set $METRIC as "variability". For easy-to-learn instances: set $METRIC as "confidence" and use the flag --worst.

Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022