Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Overview

Transfer-Learning-in-Reinforcement-Learning

Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Final Report

Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Cite this work

Nathan Beck, Abhiramon Rajasekharan, Hieu Tran, "Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations", 2021

Project description

Transfer learning approaches in reinforcement learning aim to assist agents in learning their target domains by leveraging the knowledge learned from other agents that have been trained on similar source domains. For example, recent research focus within this space has been placed on knowledge transfer between tasks that have different transition dynamics and reward functions; however, little focus has been placed on knowledge transfer between tasks that have different action spaces.

In this paper, we approach the task of transfer learning between domains that differ in action spaces. We present a reward shaping method based on source embedding similarity that is applicable to domains with both discrete and continuous action spaces. The efficacy of our approach is evaluated on transfer to restricted action spaces in the Acrobot-v1 and Pendulum-v0 domains (Brockman et al. 2016).

Our presentations

  • Presentation 1 here
  • Google Doc Folder here

Our Google Colab

https://colab.research.google.com/drive/1cQCV9Ko-prpB8sH6FlB4oj781On-ut_w?usp=sharing

Setup

  1. Clone our repository
  2. Install Gym

Using pip:

pip install gym

Or Building from Source

git clone https://github.com/openai/gym
cd gym
pip install -e .

How to run?

Run with python IDE

  1. Open main.py or main_multiple_run.py
  2. Modify env_name and algorithm that you want to run
  3. Modify parameters in transfer_execute function if needed
  4. Log will be printed out to the terminal and the plotting result will be shown on the new windows.

Run with Google Colab

Follow our sample in file Reward_Shaping_TL.ipynb to run your own colab.

Implemented Algorithms in Stable-Baseline3

Name Recurrent Box Discrete MultiDiscrete MultiBinary Multi Processing
A2C ✔️ ✔️ ✔️ ✔️ ✔️
DDPG ✔️
DQN ✔️
HER ✔️ ✔️
PPO ✔️ ✔️ ✔️ ✔️ ✔️
SAC ✔️
TD3 ✔️
QR-DQN1 ✔️
TQC1 ✔️
Maskable PPO1 ✔️ ✔️ ✔️ ✔️

1: Implemented in SB3 Contrib GitHub repository.

Actions gym.spaces:

  • Box: A N-dimensional box that containes every point in the action space.
  • Discrete: A list of possible actions, where each timestep only one of the actions can be used.
  • MultiDiscrete: A list of possible actions, where each timestep only one action of each discrete set can be used.
  • MultiBinary: A list of possible actions, where each timestep any of the actions can be used in any combination.

Refercences

  1. OpenAI Gym repo
  2. OpenAI Gym website
  3. Stable Baselines 3 repo
  4. Robotschool repo
  5. Gyem extension repos - This python package is an extension to OpenAI Gym for auxiliary tasks (multitask learning, transfer learning, inverse reinforcement learning, etc.)
  6. Example code of TL in DL repo
  7. Retro Contest - a transfer learning contest that measures a reinforcement learning algorithm’s ability to generalize from previous experience (hosted by OpenAI) link
  8. Rainbow: Combining Improvements in Deep Reinforcement Learning (repo), (paper)
  9. Experience replay (link)
  10. Solving RL classic control (link)

Related papers

  1. Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation (paper), (repo)
  2. Deep Transfer Reinforcement Learning for Text Summarization (paper),(repo)
  3. Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability (paper), (poster)
  4. Multi-Source Policy Aggregation for Transfer Reinforcement Learning between Diverse Environmental Dynamics (IJCAI 2020) (paper), (repo)
  5. Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability (paper), (poster)
  6. Deep Reinforcement Learning and Transfer Learning with Flappy Bird (paper), (poster)
  7. Decoupling Dynamics and Reward for Transfer Learning (paper), (repo)
  8. Progressive Neural Networks (paper)
  9. Deep Learning for Video Game Playing (paper)
  10. Disentangled Skill Embeddings for Reinforcement Learning (paper)
  11. Playing Atari with Deep Reinforcement Learning (paper)
  12. Dueling Network Architectures for Deep Reinforcement Learning (paper)
  13. ACTOR-MIMIC DEEP MULTITASK AND TRANSFER REINFORCEMENT LEARNING (paper)
  14. DDPG (link)

Contributors

  1. Nathan Beck [email protected]
  2. Abhiramon Rajasekharan [email protected]
  3. Trung Hieu Tran [email protected]
Owner
Trung Hieu Tran
Research Scientist @Facebook ; former @Apple
Trung Hieu Tran
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022