Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Overview

Transfer-Learning-in-Reinforcement-Learning

Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Final Report

Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Cite this work

Nathan Beck, Abhiramon Rajasekharan, Hieu Tran, "Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations", 2021

Project description

Transfer learning approaches in reinforcement learning aim to assist agents in learning their target domains by leveraging the knowledge learned from other agents that have been trained on similar source domains. For example, recent research focus within this space has been placed on knowledge transfer between tasks that have different transition dynamics and reward functions; however, little focus has been placed on knowledge transfer between tasks that have different action spaces.

In this paper, we approach the task of transfer learning between domains that differ in action spaces. We present a reward shaping method based on source embedding similarity that is applicable to domains with both discrete and continuous action spaces. The efficacy of our approach is evaluated on transfer to restricted action spaces in the Acrobot-v1 and Pendulum-v0 domains (Brockman et al. 2016).

Our presentations

  • Presentation 1 here
  • Google Doc Folder here

Our Google Colab

https://colab.research.google.com/drive/1cQCV9Ko-prpB8sH6FlB4oj781On-ut_w?usp=sharing

Setup

  1. Clone our repository
  2. Install Gym

Using pip:

pip install gym

Or Building from Source

git clone https://github.com/openai/gym
cd gym
pip install -e .

How to run?

Run with python IDE

  1. Open main.py or main_multiple_run.py
  2. Modify env_name and algorithm that you want to run
  3. Modify parameters in transfer_execute function if needed
  4. Log will be printed out to the terminal and the plotting result will be shown on the new windows.

Run with Google Colab

Follow our sample in file Reward_Shaping_TL.ipynb to run your own colab.

Implemented Algorithms in Stable-Baseline3

Name Recurrent Box Discrete MultiDiscrete MultiBinary Multi Processing
A2C ✔️ ✔️ ✔️ ✔️ ✔️
DDPG ✔️
DQN ✔️
HER ✔️ ✔️
PPO ✔️ ✔️ ✔️ ✔️ ✔️
SAC ✔️
TD3 ✔️
QR-DQN1 ✔️
TQC1 ✔️
Maskable PPO1 ✔️ ✔️ ✔️ ✔️

1: Implemented in SB3 Contrib GitHub repository.

Actions gym.spaces:

  • Box: A N-dimensional box that containes every point in the action space.
  • Discrete: A list of possible actions, where each timestep only one of the actions can be used.
  • MultiDiscrete: A list of possible actions, where each timestep only one action of each discrete set can be used.
  • MultiBinary: A list of possible actions, where each timestep any of the actions can be used in any combination.

Refercences

  1. OpenAI Gym repo
  2. OpenAI Gym website
  3. Stable Baselines 3 repo
  4. Robotschool repo
  5. Gyem extension repos - This python package is an extension to OpenAI Gym for auxiliary tasks (multitask learning, transfer learning, inverse reinforcement learning, etc.)
  6. Example code of TL in DL repo
  7. Retro Contest - a transfer learning contest that measures a reinforcement learning algorithm’s ability to generalize from previous experience (hosted by OpenAI) link
  8. Rainbow: Combining Improvements in Deep Reinforcement Learning (repo), (paper)
  9. Experience replay (link)
  10. Solving RL classic control (link)

Related papers

  1. Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation (paper), (repo)
  2. Deep Transfer Reinforcement Learning for Text Summarization (paper),(repo)
  3. Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability (paper), (poster)
  4. Multi-Source Policy Aggregation for Transfer Reinforcement Learning between Diverse Environmental Dynamics (IJCAI 2020) (paper), (repo)
  5. Using Transfer Learning Between Games to Improve Deep Reinforcement Learning Performance and Stability (paper), (poster)
  6. Deep Reinforcement Learning and Transfer Learning with Flappy Bird (paper), (poster)
  7. Decoupling Dynamics and Reward for Transfer Learning (paper), (repo)
  8. Progressive Neural Networks (paper)
  9. Deep Learning for Video Game Playing (paper)
  10. Disentangled Skill Embeddings for Reinforcement Learning (paper)
  11. Playing Atari with Deep Reinforcement Learning (paper)
  12. Dueling Network Architectures for Deep Reinforcement Learning (paper)
  13. ACTOR-MIMIC DEEP MULTITASK AND TRANSFER REINFORCEMENT LEARNING (paper)
  14. DDPG (link)

Contributors

  1. Nathan Beck [email protected]
  2. Abhiramon Rajasekharan [email protected]
  3. Trung Hieu Tran [email protected]
Owner
Trung Hieu Tran
Research Scientist @Facebook ; former @Apple
Trung Hieu Tran
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023